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Abstract: 

Surface waviness (SW) is one of the major problems confronting the economical use of as-deposited components 

made with the wire plus arc additive manufactured (WAAM) process. The SW acts as a stress raiser, thereby 

reducing the tensile properties and fatigue life of the component. In this study, the effect of compressive residual 

stress on the mechanical and fatigue behaviour of the as-deposited WAAM mild steel component was carried out 

using a hybrid process which combines deposition and rolling on the WAAM component surface. The fractured 

faces and microstructure were characterised by a scanning electron and optical microscope. The microstructural 

changes were characterised by X-ray diffraction techniques. The results revealed that an increase in the notch 

radius and compressive stress induced by rolling on the as-deposited condition reduced the SW from 0.18 to 0.08 

mm with an increase in the dislocation clusters and consequently retarding the crack propagation rate and 

improving fatigue life. This work shows that rolling has a dual effect on as-deposited WAAM mild steel 

components with a new functional surface. 

Keywords: functional surfaces; fatigue life; tensile strength; WAAM; rolling.

1. Introduction

Currently, offshore and onshore wind energy generation constitute about 8.01% and 9.1% of the entire energy 

generation in the UK, respectively. This has led to the reduction of   emissions in the UK by 12 million tonnes CO2

[1]. The Vision 2020 projection of the UK Department of Energy and Climate Change is to reduce further  CO2

emissions by 10% by the year 2020 [2]. With this mandate, the wind turbine original equipment manufacturers 

(OEMs) must look for solutions and cutting-edge technologies to remain at a competitive advantage over other 

forms of energy producers. The current subtractive manufacturing (SM) process used in the mainframe and hub 

li2106
Text Box
International Journal of Fatigue, Volume 130, January 2020, Article number 105237DOI:10.1016/j.ijfatigue.2019.105237

li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  The final published version (version of record) is available online at DOI:10.1016/j.ijfatigue.2019.105237. Please refer to any applicable publisher terms of use.



2

has some drawbacks such as material wastage, increased cost and higher production lead time of materials 

manufactured through a sand casting process before machining. 

Additive manufacturing (AM) is a method of building parts and components, layer by layer using different energy 

sources. The development of AM processes has been on the increase because of their numerous advantages 

compared to SM. The use of AM can drastically reduce material wastage and production lead times while allowing 

the building of complex shapes with less expensive tooling requirements and hence cost savings [3–6]. AM 

methods have been developed in recent times to optimise geometrical features, deposition rates, dimensional 

accuracy, layer thickness and surface finish [7]. Despite all these improvements, only a rough near net shaped 

surface (final outlook finish) can be produced [8]. 

One of the newest low-cost AM processes is wire plus arc additive manufacture (WAAM), which involves 

building a structure with a consumable wire in a layer by layer manner in an open or atmospherically controlled 

chamber. The WAAM process has a higher deposition rate than other AM processes, close to 10Kg/hr for steels 

[9,10], with better material utilisation rate than others but has a limited ability to produce finer surface finish 

features [11]. Rougher surface finish in WAAM is a result of overheating and heat accumulation effects which 

reduce the surface tension and make the molten pool unstable. The WAAM process parameters such as travel 

speed (TS), wire feed speed (WFS), interpass temperatures and the ratio of WFS to TS are responsible for the heat 

accumulation effects [12–14]. Besides, the SW challenges, WAAM has been known to be affected by unevenly 

distributed stresses generated during deposition, which might require further post-heat treatment or cold work to 

relieve these stresses and improve their mechanical properties [15].  Path planning and deposition strategies 

compensation with built parameter optimisation have been effective in reducing the residual stresses [16,17]. A 

500µm surface waviness (SW) encountered in WAAM is a serious problem, limiting the use of WAAM as-

deposited structures [5].  The as-deposited state with an SW of 500µm leads to a high level of geometric stress 

concentration, which will limit the use of the component in the as-deposited state for applications where a 

component is subjected to dynamic loading.  Despite these drawbacks, the low-cost WAAM AM process remains 

the most suited for large scale part manufacturing because of its higher deposition rate capabilities, unique 

mechanical properties better than powder bed systems, better material utilisation and  low equipment cost [5,18]. 

It is important to know that wetting plus spreading and re-melting are the two key mechanisms that control SW 

in WAAM components. The re-melting mode ensures wider and deeper molten pool deposition, occasioned by 

the low layer height (LH) and low WFS, which leads to low SW. The wetting plus spreading mode ensures narrow 
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and shallow molten pool deposition on the un-melted region, occasioned by high LH and WFS, which leads to 

high SW [19]. Various mathematical models were developed by Reeves for fused deposition modelling [20], and 

Luis Perez et al. developed a theoretical model to predict surface roughness [21]. Geng et al. also developed a 

theoretical model for determining the theoretical value of the molten pool to be inputted to ensure that the WAAM 

molten metal spread uniformly to cover all un-melted regions to reduce the SW [19].  Other techniques were also 

developed to control SW using LH and interpass cooling [22]. Xiong et al. also worked on the effect of process 

parameters to control SW [14].

All the proposed techniques and studies on improving the SW of WAAM components were only able to minimise 

but not eliminate the entire effects. SW, which acts as a stress raiser, reducing the tensile and fatigue life properties 

of as-deposited WAAM component, is still a major concern to the industry. The process parameter method of 

reducing SW is limited with a low deposition rate, and this limits the entire purpose of using WAAM as a low-

cost AM process. To fully harmonise and harness the full benefits of the WAAM process, there should be a 

compromise between SW, productivity and machining and mechanical properties. Gains from high productivity 

should cover the machining cost and create a break-even point for the industry. The high cost of jigs and features 

for machining, coupled with the cost of cutting tools, is also limiting the use of machining as a support to the high 

productivity advantage of WAAM – hence the need for a competitive cold working process that will enhance the 

SW reduction while maintaining the high productivity level.

Compared to the peening process, rolling is more effective in reducing SW [23] and residual stress in WAAM 

components [24]. Machine hammer peening (MHP) can only produce beneficial compressive stress to a limited 

depth below the material surface [25] and will not be suitable for high SW because the largest tools currently 

available can only achieve up to a few depths of plastic deformation (1.2 mm) into the WAAM surface [26].  

Although a novel approach of using MHP to complement rolling in areas of intersections where the rolling rams 

cannot run is another good method for WAAM SW reduction [26] [10]. This process is currently being developed 

at Cranfield University as a hybrid WAAM deposition process using two robots. Cold rolling was carried out by 

Colegrove et al. on a steel WAAM using the profiled and slotted roller to investigate the reduction in residual 

stresses and distortion observed in welding with their impact on microstructure [23]. Xie et al. also carried out hot 

rolling (simultaneous deposition and rolling) using a flat roller to improve the geometrical accuracy of 304 

stainless steel [8]. Rolling reduced the post-machining time and subsequently enhanced the fatigue properties of 

the as-deposited structure. 
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To the best knowledge of the authors, there is no current work showing the effects of using compressive stresses 

(rolling) to reduce the SW of as-deposited WAAM steel components and how this affects their static and fatigue 

properties when used in the as-deposited condition. In this study, WAAM of mild steel was carried out using the 

hybrid process. The effect of compressive residual stress on the mechanical and fatigue properties of the as-

deposited component was evaluated. The results for the WAAM as-deposited and WAAM rolled conditions have 

been compared concerning mechanical strength, fatigue life and fracture behaviour; a correlation with their 

microstructural variation was also made. Findings from this work show that WAAM as-deposited mild steel 

components could be used in the as-deposited condition for engineering application with rolling combined to 

reduce SW.

2. Experimental methods

2.1 WAAM deposit enhanced by surface rolling

ER70S-6 WAAM structural steel was deposited with dimensions of 245 mm X 120 mm X 5.0 mm and SW of 

0.18 mm with the standard cold metal transfer (CMT) welding process using Fronius CMT (VR 7000 CMT) 

power source.  Both sides of the deposited walls were rolled with a constant travelling (TS) of 500mm/min parallel 

to the welding direction (X-direction) with different loads for different samples (50, 75, 100, 140 and 160 kN) 

respectively, using a small flat roller with an effective width of 20 mm and a diameter of 120 mm as shown in 

Fig. 1 (a). The set-up and testing rig are shown in Fig. 1 (b & c). The wire composition and deposition parameters 

are shown in Tables 1 and 2.

Fig. 1. (a) Set-up (b) roller configuration (c) fatigue testing rig
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Table 1. Chemical Composition of Wire

Chemical Composition (wt %)

Alloys C Si Mn P S Cr Mo Ni Cu Ti Zr

ER70S-6 0.06 0.94 1.64 0.013 0.016 0.020 0.005 0.020 0.020 0.004 0.002

Table 2. WAAM Deposition Parameters

Parameters Values

CTWD 11.5 mm

Wire diameter 1.0 mm

Shielding gas 80% Ar + 20% CO2

Flow rate 15 L/min

WFS 4.0 m/min

TS 0.4 m/min

WFS/TS 10

Layer height (LH) 1.6 mm

2.2 Surface waviness, microstructure and hardness characterisation 

The WAAM as-deposited structure and the rolled condition samples were transversely cross-sectioned from the 

wall for metallographic analysis and micro-hardness measurement with the subsequent procedure consisting of 

grinding polishing and etching in 5% Nital. Micro and macro images of the etched surface were obtained using 

the optical microscope (Meiji Japan) and deployed to the Axio vision software to reveal the SW parameters 

(effective wall width, total wall width, notch radius and depth). The micro-hardness was measured by the 

Zwick/Roell hardness tester across the through thickness direction under a load of 0.2 kg with 10 s holding time. 

Scanning Electron Microscope ('Philips' SEM) was used to characterise the microstructure and fracture surfaces. 

The X-ray diffraction (XRD) patterns of WAAM as-deposited (70 -A) and WAAM as-deposited + rolled (160 

KN) was measured on a D8 Advance X-ray diffractometer (Bruker AXS, USA) using a Lynxeye detector and Cu 

Kα radiation, with wavelength λ = 0.154 nm, 30 kV, and 10 mA. The scanning angle was between 10° and 90°, at 

a scanning speed of 10°/min, and a step size of 0.02°/s.
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2.3 Mechanical characterisation

All tests were done at ambient temperature. The tensile test was performed in accordance with ASTM E8/E8M-

16a on all tensile samples, as given in Table 3. A gauge length of 32 mm was used to calculate the elongation. A 

strain rate of 1mm/min was utilised. The uni-axial tensile testing was performed with a 100 kN electromechanical 

controlled INSTRON 5500R machine with a load cell of 30 kN

Table 3. Tensile samples 

Tensile sample condition Surface waviness(mm) Number of samples

As-deposited  0.18 3

Machined N/A 3

As-deposited + rolled  0.08, 0.13, 0.17 9

As-deposited +rolled + Machined N/A 3

Table 4. Fatigue samples 

Fatigue sample condition Surface waviness(mm) Number of samples

As-deposited  0.18 5

Machined N/A 6

As-deposited + rolled  0.08 3

The fatigue test was performed in accordance with ASTM E466-15 on all fatigue samples, as given in Table 4. A 

tension-tension fatigue test was carried out with a frequency of 10 Hz and a stress ratio of R = 0.1 using an Instron 

machine equipped with a 250 KN load cell. The fatigue response of the different conditions was established at 

different stress levels to build an S-N curve. The test programme was set up to compare the mechanical properties 

between the three fatigue sample conditions as detailed in Table 4. These samples will be subjected to the same 

loading condition in service. The WAAM build structure showing the build direction and the welding direction is 

shown in Fig. 2(a). The dimensioning of the fatigue specimen and the tensile specimen is shown in Fig. 2 (b & c).



7

Fig. 2. (a) Build orientation (b) fatigue testing geometry (c) tensile testing geometry

3. Results 

3.1. Surface waviness and stress concentration factors (as-deposited & rolled)

The WAAM build and specimen loading direction is shown in Fig. 3 and Fig. 4 and presents the variation in SW 

and stress concentration factor (SCF) of both conditions and the relationship between rolling load P and SW. The 

macrostructure showing the effect of the rolling load on WAAM as-deposited is shown in Fig. 5. The measured 

SW of the rolled WAAM samples, as shown in Fig. 4, revealed that the SW decreases with the increase in the 

rolling load. The measured SW of the as-deposited WAAM sample was 0.18 mm without rolling; this further 

reduces to 0.08 mm with a rolling load of 160 kN. It is also evident that the total wall width (TWW) as shown in 

Fig. 3 (d) also decreases as the SW decreases, as shown in Fig. 5 (b-d).  The peaks of the as-deposited samples 

are reduced as the rolling load increases because of plastic deformation.    
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Fig. 3.(a) as-deposited WAAM loading in welding direction (X-direction) (b) etched cross-section of as-

deposited WAAM (c) as-deposited schematic illustrating  SW parameters and notch depth

Fig. 4. Variation in SCF and SW of WAAM as-deposited and rolled conditions of ER70S-6
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Fig. 5. Macros showing the effects of rolling load on WAAM as-deposited 

3.2. Monotonic properties - tensile strength

Fig. 6 presents the stress-strain curve obtained from the tensile samples in Table 3. The tensile strength (ultimate 

tensile strength, UTS and yield strength, YS) are on the increase as the rolling load increases. It is important to 

note that the as-deposited condition with SW of 0.18mm yielded the least strength values. The as-deposited + 

rolled + machined condition without any SW showed the highest tensile strength, with the least percentage 

elongation (PCE) as shown in Fig. 6, it is evident that SW reduces the tensile strength.  The interrupted yielding 

phenomenon called the luder band elongation tends to disappear due to work-hardening rate effects incurred from 

the plastic deformation process [27,28]. This interrupted yielding decreases with the rolling loading as seen in 

Fig. 6.  The as-deposited + machined condition showed higher PCE compared to the as-deposited + rolled. The 

interaction plot for rolling load versus UTS and SW is shown in Fig. 7.    
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Fig. 6. Stress-Strain curve of the various conditions of WAAM ER70S-6

Fig. 7. Interaction plot for rolling load P(KN) versus UTS and SW

3.3. Hardness profile and microstructural variation

The hardness versus depth plots across the through thickness direction for both as-deposited and the various rolled 

conditions are shown in Fig. 8. The SEM images showing the effect of rolling on the microstructure are shown in 

Fig. 9. The average hardness of the as-deposited + rolled increases with the rolling load. The 160 kN samples 

show the maximum hardness of 233 ± 1.5 HV at both rolled surfaces, while the 50 and 75 kN samples show 

maximum hardness of 225 ± 1.0 & 219 ± 1.5 HV at both rolled surfaces, respectively. Both as-deposited + rolled 

conditions showed minimum hardness at the midpoint of the sample.  The as-deposited condition showed a 
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maximum hardness of 186 ± 2.0 HV, which is 25.26% lower than the maximum obtained hardness obtained with 

160 KN rolled condition. The increase in hardness with the rolling load is a result of more dislocation density 

being generated by the higher rolling load, which work-harden the material [29], and as a result of the stacking 

fault energy [30],[31]. In Fig. 9, the as-deposited (Fig. 9 (a))  has a grain size of 14.5µm, which is bigger than the 

as-deposited + rolled (Fig. 9 (b-d)), which had grain sizes decreasing as the rolling load increased. The 160 kN 

sample had elongated grains with a size of 8.6µm. Rolling plastically deforms the surface and re-distribute the 

grains due to the increase in dislocation density. It has also been reported that it caused austenite nucleation and 

provided further grain size reduction [23]. In these studies rolling plastically deforms the peaks of the SW, shown 

in Fig. 3 (c), into surfaces, shown in Fig. 5 (b-d), hence reducing the TWW and the SW as well. This is also in 

support of the claim by Colegrove et al. [23] and Hönnige et al. [29]. The plastic deformation induced on the 

surface, which is a function of the rolling load reduces not only SW but also the residual stress. This has been 

proved to improve the mechanical properties of the WAAM deposit.

Fig. 8. Effect of rolling load P(kN) and  hardness variation across the through thickness direction (rolling on 

both surfaces)
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Fig. 9. SEM images (a) as-deposited (b) as-deposited + rolled (50 kN) (c ) as-deposited + rolled (75 kN) (d) as-

deposited + 160 kN

4.0 Discussion 

4.1  Macroscopic failure mechanism of as-deposited and rolled WAAM structures

The effect of notch radius on SW for both rolled, and the as-deposited condition is presented in Fig. 10 (a) while 

Fig. 10 (b) presents the effect of the SCF on the SW of both rolled and as-deposited condition. It is evident from 

this study that the notch radius, ( ) (as indicated in Fig. 3 (c)), increases as the SW reduces (Fig. 10 (a)).  Low 𝛒
values of SW give rise to a corresponding increase in notch radius, as shown in Fig. 10 (a). Rolling reduces the 

notch depth (as indicated in Fig. 3 (d)) and increases the notch radius. Smaller notch radius (0.2mm) as seen in 

Fig. 10 (a) is as a result of high SW (0.32mm), which consequently leads to a high SCF of 2.48, as shown in Fig. 

10 (b). This is observed in the as-deposited condition. Larger notch radius (0.68 mm) as seen in Fig. 10 (a) is as a 

result of low SW (0.09 mm), which consequently leads to a low SCF of 1.65, as shown in Fig. 10 (b). This is 
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observed in the rolled condition. The rolled condition shows a smooth transition between the layers, as shown in 

Fig. 5 (b-d), while the as-deposited condition shows a sharp transition between layers, hence served as points of 

high-stress concentrations. Failure in WAAM as-deposited is always from this point of weakness. 

Fig. 10. Parameters effects (a) effect of notch radius on SW for both rolled and as-deposited condition (b) effect 

of SCF on SW of both rolled and as-deposited condition  

4.2  Tensile fractures modes and morphologies  

Table 5 shows the average static tensile test values of WAAM as-deposited, machined and rolled under different 

conditions. The tensile fracture morphology in the various conditions is presented in Fig. 11. It is evident from 

the results that the UTS and YS are in direct correlation with the level of SW.  High SW leads to reduced tensile 

properties. The SW serves as points of fracture initiation – the higher the SW, the quicker to failure the sample 

will be. It is evident from Table 5 that the application of rolling which reduces the SW. as seen in Fig. 10 (a & b), 

also enhanced the UTS and YS of the WAAM deposit. Rolling with 160 kN force produced a 55% and 49.25% 

enhancement on the SW and UTS respectively. While a rolling load of 75 kN produce 27% and 3.9% in SW and 

UTS enhancement respectively. But PCE, on the other hand, is decreased as the rolling load increased. There was 

a decrease of 37% in the PCE when a rolled load of 160 kN was applied to the as-deposited condition. Rolling 

induced strain effects that reduced the thickness and increased the length in the rolled direction as a result of 

plastic flow [29]. The machined condition without SW showed higher UTS and YS compared to the as-deposited 

condition. The as-deposited + rolled + machined condition produce a UTS and YS of  665 MPa and 608 MPa 
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respectively, but with the lowest PCE of 15%, hence rolling enhanced, microstructural changes are responsible 

for these properties. 

Table 5. Average static tensile test values of WAAM(ER70S-6) as-deposited, as-deposited + rolled and as-

deposited + machined

P-(kN) SW(mm) SCF UTS(MPa) (MPa)𝑌𝑆,𝑅𝑝0.2 Elongation(%) Condition

0 0.18 1.99 402 ± 2.0 300 ± 1.5 30 ± 1 As-deposited

160 0.08 1.61 600 ± 3.0 574 ± 2.6 22  ± 2
As-deposited + 

Rolling 

75 0.13 1.82 552 ± 1.0 498 ± 5.0 23 ± 2
As-deposited + 

Rolling

50 0.17 1.93 546 ± 3.0 486 ± 2.6 32 ± 2
As-deposited + 

Rolling

- - - 470 ± 2.0 350 ± 1.5 35 ± 3
As-deposited + 

Machined

- - - 665 ± 2.0 608 ± 1.5 15 ± 3 As-deposited + 

Rolled + Machined

The fracture morphology of the as-deposited as seen in Fig. 11 (a) is characterised by conical equiaxed dimples 

formed from microvoid coalescence rupture, indicating a high level of ductile tearing with low strength. 

Precipitates in the form of inclusions are also seen. The dimples in the as-deposited are more oval and ductile 

compared to the as-deposited + rolled condition. The as-deposited + rolled + machined condition as seen in Fig. 

11 (b) has smaller and deeper dimples, hence the higher strength with reducing ductility. The as-deposited + rolled 

condition as showed in Fig. 11 (c) is dominated by a mixture of large and small elongated dimples as a result of 

rolling, enhancing the elongation of the grain structure as a result of plastic deformation. Hence the shear elongated 

dimples lead to high UTS and YS, with reduced ductility compared to the as-deposited condition.  
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Fig. 11. Tensile fracture morphology of WAAM ER70S-6 (a) as-deposited (b) as-deposited + rolled (160 kN) + 

machined (c) as-deposited + rolled (160 kN(X20, 000)) (d) as-deposited + rolled (160 kN(X5, 000))

4.3 Rolling enhanced microstructural changes

The XRD patterns of the as-deposited (70-A) and rolled (160 kN) are shown in Fig. 12 (a). Only the martensite 

phase was observed in both samples with no appearance of the austenite phase, i.e. no phase transformation after 

the sample was subjected to rolling. At diffraction angles (2Ɵ) of 45.18°, 65.31° and 82.71°, the samples exhibit 

peaks on Fe (110), Fe (200), Fe (211) planes, whereas a little broadening of the peaks on all the three planes is 

observed for the rolled sample (Fig. 12 (b-d)). The broadening of the peaks experienced by the rolling sample 

could be ascribed to the structural refinement in the orientation of the sample. The rolled sample (160 kN) 

experienced a higher intensity in the XRD pattern as compared to the as-deposited. Using Scherrer’s equation, the 

volume of the phases was calculated to be 0.02263 nm3, 0.02322 nm3, and 0.02326 nm3, for the (110), (200), and 

(211) phases, respectively. Due to the peak broadening, as shown in the XRD analysis (Fig. 12) and structural 

refinement in orientation observed in the rolled-160 kN sample, compressive residual stress was induced which 

increases the volume fraction of the martensite. Compared to the as-deposited sample, the volume fraction of the 

martensite phase in the rolled-160 kN sample increases as the rolling time increases, thereby strengthening the 
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sample through plastic deformation and increasing the hardness in the process. This could be responsible for the 

high hardness experienced by the rolled-160 kN sample in Fig. 8. Furthermore, the volume fraction of the 

martensite phase of the rolled-160 kN sample, which is strongly dependent on the level of deformation induced 

from the rolling process, increases with the rolling load. This increases the stacking-fault energy originating from 

the deformation process, thereby improving the hardness of the rolled condition and hence enhancing the strength 

and fatigue life.

Fig. 13 shows the transmission electron microscope (TEM) images of the as-deposited and rolled (160 kN) 

WAAM steel. In the as-deposited condition, Fig. 13 (a-c), thin like-shaped cementite particles are observed inside 

the lath with increased dislocation density of the cementite; besides, lath martensite was produced. Dislocation at 

the lath boundaries was also produced with sub-grain boundaries (nanoscale) or prior austenite grain boundaries 

(Fig. 13 (c)). Furthermore, a well-developed dislocation substructure is observed in the volume of martensite 

crystals in the as-deposited samples. The thin lath-like particles of cementite appeared in the martensite laths by 

the beginning of deformation (Fig. 13 (a-c)). The TEM images in Fig. 13 (d & e) reveal the production of grains 

which were separated by high-angle grain boundaries (HAGBs). Most of the grains in the rolled samples are 

heavily strained and contain a high density of dislocations, as indicated in Fig. 13 (d & e). 
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Fig. 12. XRD Pattern of untreated (70-A) and treated (160 kN) mild steel (a); detailed XRD patterns for the 

peaks:  Fe (110) (b), Fe (200) (c), Fe (211) (d)
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Fig. 13. TEM image of; as-deposited (a-c) samples and as-deposited + rolled (160 kN) (d-f) 

4.4. Fatigue responses and microscopic failure mechanism   

The high cycle fatigue behaviour of the WAAM as-deposited, machined and as-deposited + rolled is displayed in 

Fig. 14. The as-deposited condition has a SW of 0.18 mm (180 µm), while the as-deposited + rolled condition has 

an SW of 0.08 mm (80 µm) when rolled with a force of 160 kN. The machined condition showed better fatigue 

limit than other conditions. But, generally, rolling improved the fatigue limit of the as-deposited samples. Fig. 15 

presents the fractography of WAAM ER70S-6 in the machined condition, Fig. 16 also shows the fractography of 

the as-deposited condition, while the fractography analysis of the as-deposited + rolled condition is displayed in 

Fig. 17.

Crack initiation mechanism and failure path in the machined condition is essentially by a ductile fracture through 

microvoid coalescence from the weakened path formed by the hard spots at the surface of the machined samples 

during fatigue testing, as shown in Fig. 15 (a). Silicon and manganese oxides inclusions are formed as a result of 

the oxidising potential of the shielding gas used for the deposition, and the relatively high heating and rapid 

cooling of the WAAM process [32]. These inclusions serve as hard spots with high-stress concentrations and areas 

of quick failure initiation for the machined condition as the effect of SW has been eliminated by machining [33]. 

Fatigue crack growth is through ductile striations caused by cyclic hardening as a result of crack tip blunting by 

slip during loading and unloading. The ductility of this material also supports the fatigue crack growth behaviour, 

as shown in Fig. 15 (b & c).  The striation spacing is closer than the observation in the as-deposited condition, as 
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shown in Fig. 16 (a & b), hence a higher fatigue life of 107,698 cycles at maximum stress of 492MPa. The main 

function of the added micro-alloying (Ti, Cu & Zr) as shown in Table 1. is for precipitation strengthening. And 

the promotion of acicular ferrite formation, which induces microstructural refinement [34] – hence the behaviour 

of the material. 

Fig. 14. High cycle fatigue properties (R=0.1) of WAAM ER70S-6 in the as-deposited, as-deposited + rolled 

and machined condition  
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Fig. 15. SEM Fractography of WAAM ER70S-6 in the machined condition, (a-c)  ,  = 𝜎𝑚𝑎𝑥 = 492𝑀𝑃𝑎 𝑁𝑓
107,698 cycles

Fig. 16. SEM Fractography of WAAM ER70S-6 (as-deposited)  ,  = 495,119 cycles (b)(𝑎)𝜎𝑚𝑎𝑥 = 393𝑀𝑃𝑎 𝑁𝑓 ,

 ,  = 318,145 cycles (c)  ,  = 1,069 cycles𝜎𝑚𝑎𝑥 = 442𝑀𝑃𝑎 𝑁𝑓 ,𝜎𝑚𝑎𝑥 = 492𝑀𝑃𝑎 𝑁𝑓
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The significant reduction in fatigue life for the as-deposited sample is primarily due to the presence of notches 

(surface waviness) which act as stress raisers. The cracks initiated at the trough (pit) of the SW and propagated 

towards the centre of the specimen, at a critical length, where the remaining sample ligament could no longer 

support the increasing stress level, a plastic collapse will occur. Maximum stress concentration occurs between 

any two layers that form the SW profile, as shown in Fig. 16 (a). Increasing the notch radius and decreasing the 

depths of the SW with plastic deformation (rolling), relaxes the stress concentration effects.  The lower the SCF 

of the WAAM as-deposited surface, the more useful it becomes if the application were monotonic, or cyclic 

loading is involved. Initiation of cracks during fatigue loding is normally from the outside and propagating inward 

till failure, as shown in Fig. 16 (b). The fractography also reveals multiple crack initiation sites at the surface, 

independently of the stress amplitude condition. The closer the included angle between layers to 180°, as shown 

in Fig. 16 (a & b), the greater the resistance to fatigue crack failure. The fatigue response of the WAAM as-

deposited part is largely determined by the WAAM deposition parameters and build sequence. The fractography 

shows that the striation spacing is dependent on the stress level applied to the as-deposited condition. The lower 

fatigue life of 1,069 cycles at maximum stress of 492MPa was also observed with the as-deposited condition as a 

result of the effect of  SW.    

The crack initiation site and path in the as-deposited + rolled WAAM surfaces is from the weakened valley with 

the maximum stress concentration between two layers where their curvature was not effectively reduced, as shown 

Fig. 17 (a & c).  The notch radius is increased by the rolling force, as shown in Fig. 17 (a) where the depth between 

two layers is reduced, hence the reduction of the SCF on the rolled surface. The higher the load, the lower the 

SW, as shown in Fig. 4. The as-deposited + rolled had a life improvement of 66%  at a stress level of 442MPa as 

compared to the as-deposited condition. The as-deposited + rolled showed a higher fatigue life (266,856 cycles) 

at a stress level of 492MPa, higher than the as-deposited condition (1,069 cycles) and the machined condition 

(107,698 cycles).   Most of the grains in the rolled samples are heavily strained and contain a high density of 

dislocations, as indicated in Fig. 13 (a & b), hence an improvement in fatigue life.

Rolling improves the usefulness of the WAAM as-deposited part by plastically deforming the peaks of the SW, 

hence increasing notch radius and decreasing the depths which are points of the stress raiser. The deformed 

notches and valleys are responsible for delaying the initiation of cracks when subject to static and dynamic 

loading. It has also been reported that compressive stress from rolling also retards crack propagation in a structure 

[35].  
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Fig. 17. SEM Fractography of WAAM ER70S-6 (as-deposited + rolled_160KN) (a-b)  ,  = 𝜎𝑚𝑎𝑥 = 442𝑀𝑃𝑎 𝑁𝑓
530,319 cycles (c-d)  ,  = 266,856 cycles (c)  𝜎𝑚𝑎𝑥 = 492𝑀𝑃𝑎 𝑁𝑓  

5. Conclusions

In this study, the functionality of WAAM mild steel in the as-deposited condition was enhanced by rolling to 

improve its surface finish and fatigue life.

 High SW is detrimental to the mechanical strength and fatigue life of an as-deposited WAAM steel 

structure.

 Compressive stress induced by rolling on the as-deposited condition reduces the SW and produces an 

increase in mechanical and fatigue strength due to the macroscopic and microscopic influence. 

 Reduction of the SW is achieved by the increase of the notch radius of the valley between two SWs in 

WAAM as a result of rolling. Compressive stress induced by rolling and notch radius reduction is 

responsible for fatigue life improvement.

 WAAM mild steel components could be used in the as-deposited condition for engineering application 

when rolling is applied to reduce its SW.

 Finally, the failure mechanism for the as-deposited condition is the macroscopic mechanism, whereas 

the microscopic mechanism is dominant for the machined condition.
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Highlights

 High surface waviness is detrimental to the static and dynamic behaviour of as-

deposited WAAM steel structure.

 The failure mechanism for the as-deposited condition is the macroscopic mechanism, 

whereas the microscopic mechanism is dominant for the machined condition.

 Compressive stress induced by rolling on the as-deposited condition reduces the surface 

waviness and produces a corresponding increase in mechanical strength and fatigue 

strength due to the macroscopic and microscopic influence. 

 WAAM mild steel components could be used in the as-deposited condition for 

engineering application when rolling is applied to reduce its surface waviness.


