35 research outputs found
Caspase 8 activation independent of Fas (CD95/APO-1) signaling may mediate killing of B-chronic lymphocytic leukemia cells by cytotoxic drugs or gamma radiation.
Ligation of the cell-surface Fas molecule by its ligand (Fas-L) or agonistic anti-Fas monoclonal antibodies results in the cleavage and activation of the cysteine protease procaspase 8 followed by the activation of procaspase 3 and by apoptosis. In some leukemia cell lines, cytotoxic drugs induce expression of Fas-L, which may contribute to cell killing through the ligation of Fas. The involvement of Fas, Fas-L, and caspase 8 was studied in the killing of B-cell chronic lymphocytic leukemia (B-CLL) cells by chlorambucil, fludarabine, or gamma radiation. Spontaneous apoptosis was observed at 24-hour incubation, with additional apoptosis induced by each of the cytotoxic treatments. Although Fas mRNA expression was elevated after exposure to chlorambucil, fludarabine, or gamma radiation, Fas protein levels only increased after irradiation. Therefore, Fas expression may be regulated by multiple mechanisms that allow the translation of Fas mRNA only in response to restricted cytotoxic stimuli. None of the cytotoxic stimuli studied here induced Fas-L expression. An agonistic anti-Fas monoclonal antibody (CH-11) did not significantly augment apoptosis induction by any of the death stimuli. A Fas-blocking antibody (ZB4) did not inhibit spontaneous, chlorambucil-, fludarabine-, or radiation-induced apoptosis. However, procaspase 8 processing was induced by all cytotoxic stimuli. These data suggest that the Fas/Fas-L signaling system does not play a major role in the induction of apoptosis in B-CLL cells treated with cytotoxic drugs or radiation. However, Fas-independent activation of caspase 8 may play a crucial role in the regulation of apoptosis in these cells
Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs.
We studied the actions of geldanamycin (GA) and herbimycin A (HMA), inhibitors of the chaperone proteins Hsp90 and GRP94, on B chronic lymphocytic leukemia (CLL) cells in vitro. Both drugs induced apoptosis of the majority of CLL isolates studied. Whereas exposure to 4-hour pulses of 30 to 100 nM GA killed normal B lymphocytes and CLL cells with similar dose responses, T lymphocytes from healthy donors as well as those present in the CLL isolates were relatively resistant. GA, but not HMA, showed a modest cytoprotective effect toward CD34+ hematopoietic progenitors from normal bone marrow. The ability of bone marrow progenitors to form hematopoietic colonies was unaffected by pulse exposures to GA. Both GA and HMA synergized with chlorambucil and fludarabine in killing a subset of CLL isolates. GA- and HMA-induced apoptosis was preceded by the up-regulation of the stress-responsive chaperones Hsp70 and BiP. Both ansamycins also resulted in down-regulation of Akt protein kinase, a modulator of cell survival. The relative resistance of T lymphocytes and of CD34+ bone marrow progenitors to GA coupled with its ability to induce apoptosis following brief exposures and to synergize with cytotoxic drugs warrant further investigation of ansamycins as potential therapeutic agents in CLL
Folic acid fortification and public health: Report on threshold doses above which unmetabolised folic acid appear in serum
BACKGROUND: All flour in the USA is fortified with folic acid at a level of 140 μg/100 g which is estimated to supply an extra 100 μg daily to the average diet. Some researchers have advocated that this be increased to double and even four times this amount. Based on previous research these higher levels are likely to lead to the appearance of unmetabolised vitamin in the circulation, which may have safety implications for sub-groups of the population. The UK and the Republic of Ireland will likely introduce mandatory fortification also in the next year or so. The aim of this study was to capture the short-term effect of folic acid fortification on unmetabolised folic acid in serum after chronic consumption of folic acid. METHODS: After pre-saturation with 400 μg folic acid supplements daily for 14-weeks, healthy folate replete adults (n = 20) consumed folic acid fortified bread, at three different levels (400 μg, 200 μg, 100 μg) over a period of one week each. The dose was administered in two-equal sized slices consumed at 09.00 hrs and 13.00 hrs. Serum samples for total folate and folic acid were collected at baseline, after 14-weeks of supplementation, and pre and post (at 1, 2, 3 and 4 hours) each dose tested. RESULTS: Unmetabolised folic acid was detected after the 14-week supplementation period. Folic acid was not detected in either the 200 μg or 100 μg (current US regime) doses tested but was present at the highest level (400 μg) tested. CONCLUSION: Our findings suggest that persons exposed to the current US fortification programme supplying an average of 100 μg per day or less are unlikely to have unmetabolised folic acid in serum. It also seems that daily consumption of the higher level of 200 μg or less is unlikely to be problematic. Increasing the level however to 400 μg on the other hand is likely to lead to unmetabolised folic acid appearance
Grandisin induces apoptosis in leukemic K562 cells
Abstract In this study, the potential antileukemic activity of grandisin, a lignan extracted from Piper solmsianum, was evaluated against the leukemic line K562. The cytotoxicity of grandisin (0.018 to 2.365 µM) was evaluated in K562 and normal peripheral blood lymphocytes by Trypan Blue Exclusion and MTT methods after 48h exposure to the drug. In both methods, cellular viability was concentration-dependent and the IC50 values were lower than 0.85µM. Analysis of K562 cells after treatment with grandisin showed that the cell cycle was arrested in the G1 phase with a 12.31% increase, while both S and G2 phases decreased. Morphological studies conducted after the exposure of K562 to grandisin revealed changes consistent with the apoptosis process, which was confirmed by anexin V stain and caspase activation. Thus, lignan grandisin showed antileukemic activities against the K562 cell line and the cell death process occurred via apoptosis
Glucosylceramide synthase inhibitors sensitise CLL cells to cytotoxic agents without reversing P-gp functional activity.
Malignant B-cells from most chronic lymphocytic leukaemia (CLL) patients over-express MDR1 encoded P-glycoprotein (P-gp) multidrug efflux pump. Inhibition of glucosylceramide (GC) synthesis has been shown in cell lines to correlate with the expression and function of P-gp and sensitise cancer cells to cytotoxic agents. We investigated the hypothesis that reducing intracellular GC levels will reduce P-gp expression in malignant cells from CLL patients. We studied the ability of glucosylceramide synthase (GCS) inhibitors N-butyl-deoxygalactonojirimycin (OGB-1) and N-nonyl-deoxygalactonojirimycin (OGB-2) to sensitise CLL cells to conventional cytotoxic drug 2-chlorodeoxyadenosine (CdA) and the cytostatic drugs chlorambucil and fludarabine. The effect on P-gp activity was analysed using the calcein-AM accumulation assay where a multidrug activity factor (MAF) of >10 in the presence of a P-gp inhibitor denotes P-gp functional activity. The P-gp over-expressing cell line CEM-VLB showed a MAF value of 96.4 with the P-gp inhibitor Z.3HCL, which fell to 15.7 after co-incubation with OGB-1 and 45.9 with OGB-2. The IC(50) for vincristine fell from >10 microg/ml to 55.5 ng/ml in the presence of OGB-2. In P-gp(+ve) peripheral blood mononuclear cells from three normal volunteers, the mean MAF values for Z.3HCL, OGB-1 and OGB-2 were 23.86, 1.83 and 16.2 respectively. In 9/13 CLL samples the mean P-gp functional activity was 22.15 and P-gp was over-expressed in 12/13 samples. However, the MAF value with OGB-1 and OGB-2 was <10. Nevertheless, sensitisation in CLL cells was observed by a reduction in the IC(50) in the presence of OGB-1 and OGB-2 with the conventional drugs. We conclude that although GCS inhibitors sensitize CLL cells to cytotoxic and cytostatic drugs, they do not appear to have any effect on P-gp functional activity