24 research outputs found
Frequency-Domain Coherent Control of Femtosecond Two-Photon Absorption: Intermediate-Field vs. Weak-Field Regime
Coherent control of femtosecond two-photon absorption in the
intermediate-field regime is analyzed in detail in the powerful frequency
domain using an extended 4th-order perturbative description. The corresponding
absorption is coherently induced by the weak-field non-resonant two-photon
transitions as well as by four-photon transitions involving three absorbed
photons and one emitted photons. The interferences between these two groups of
transitions lead to a difference between the intermediate-field and weak-field
absorption dynamics. The corresponding interference nature (constructive or
destructive) strongly depends on the detuning direction of the pulse spectrum
from half the two-photon transition frequency. The model system of the study is
atomic sodium, for which both experimental and theoretical results are
obtained. The detailed understanding obtained here serves as a basis for
coherent control with rationally-shaped femtosecond pulses in a regime of
sizable absorption yields.Comment: 25 pages, 5 figure
Recommended from our members
Ultrafast valley-resolved carrier dynamics in group IV semiconductors
Attosecond transient absorption spectroscopy at the M4,5-edge of Ge following ultrafast photoexcitation reveals valley-resolved hot electron and hole relaxation, carrier recombination and trapping in Ge and Si-Ge alloy in unprecedented clarity and simultaneously
Recommended from our members
Ultrafast transient absorption at the Germanium M4,5-edge to measure electron and hole dynamics
Extreme ultraviolet (XUV) transient absorption at the germanium M4,5-edge simultaneously measures electron and hole dynamics over 1.5 ps with few-femtosecond resolution. In the analysis, time-dependent density functional theory (TD-DFT) will be compared with experimental data
Recommended from our members
Ultrafast transient absorption at the Germanium M4,5-edge to measure electron and hole dynamics
Extreme ultraviolet (XUV) transient absorption at the germanium M -edge simultaneously measures electron and hole dynamics over 1.5 ps with few-femtosecond resolution. In the analysis, time-dependent density functional theory (TD-DFT) will be compared with experimental data. 4,
Extreme ultraviolet transient absorption of solids from femtosecond to attosecond timescales [Invited]
High-harmonic generation (HHG) produces ultrashort pulses of extreme ultraviolet radiation (XUV), which can be used for pump-probe transient absorption spectroscopy in metal oxides, semiconductors, and dielectrics. Femtosecond transient absorption on iron and cobalt oxides identifies ligand-to-metal charge transfer as the main spectroscopic transition, rather than metal-to-metal charge transfer or d-d transitions, upon photoexcitation in the visible. In silicon, attosecond transient absorption reveals that electrons tunnel into the conduction band from the valence band under strong-field excitation, to energies as high as 6 eV above the conduction band minimum. Extensions of these experiments to other semiconductors, such as germanium, and other transition metal oxides, such as vanadium dioxide, are discussed. Germanium is of particular interest because it should be possible to follow both electron and hole dynamics in a single measurement using transient XUV absorption