46 research outputs found

    A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band

    Get PDF
    High-resolution spectroscopy (R≤20,000) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (R=100,000) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5μm. We observe a weak (3.0σ, or S/N=4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K band, we measure a detection significance of 8.4σ for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken 3 yr apart, this points to the absence of strong radial-velocity anomalies due, e.g. to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of K_P=(145.2±2.0) km/s (1σ ) and improve the error bars on this parameter by ∼70 per cent. However, we only marginally tighten constraints on orbital inclination (66.2+3.7−3.1 deg) and planet mass (0.963+0.036−0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semi-major axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterization via high-resolution spectroscopy

    β\beta Pictoris b through the eyes of the upgraded CRIRES+

    Full text link
    Context: High-resolution spectrographs fed by adaptive optics (AO) provide a unique opportunity to characterize directly imaged exoplanets. Observations with such instruments allow us to probe the atmospheric composition, spin rotation, and radial velocity of the planet, thereby helping to reveal information on its formation and migration history. The recent upgrade of the Cryogenic High-Resolution Infrared Echelle Spectrograph (CRIRES+) at the VLT makes it a highly suitable instrument for characterizing directly imaged exoplanets. Aims: In this work, we report on observations of β\beta Pictoris b with CRIRES+ and use them to constrain the planets atmospheric properties and update the estimation of its spin rotation. Methods: The data were reduced using the open-source \textit{pycrires} package. We subsequently forward-modeled the stellar, planetary, and systematic contribution to the data to detect molecules in the planet's atmosphere. We also used atmospheric retrievals to provide new constraints on its atmosphere. Results: We confidently detected water and carbon monoxide in the atmosphere of β\beta Pictoris b and retrieved a slightly sub-solar carbon-to-oxygen ratio, which is in agreement with previous results. The interpretation is hampered by our limited knowledge of the C/O ratio of the host star. We also obtained a much improved constraint on its spin rotation of 19.9±1.019.9 \pm 1.0 km/s, which gives a rotation period of 8.7±0.88.7 \pm 0.8 hours, assuming no obliquity. We find that there is a degeneracy between the metallicity and clouds, but this has minimal impact on the retrieved C/O, vsiniv\sin{i}, and radial velocity. Our results show that CRIRES+ is performing well and stands as a highly useful instrument for characterizing directly imaged planets.Comment: Accepted for publication in A&

    Retrieval survey of metals in six ultra-hot Jupiters: Trends in chemistry, rain-out, ionisation and atmospheric dynamics

    Get PDF
    Ground-based high-resolution spectroscopy (HRS) has detected numerous chemical species and atmospheric dynamics in exoplanets, most notably ultra-hot Jupiters (UHJs). However, quantitative estimates on abundances have been challenging but are essential for accurate comparative characterisation and to determine formation scenarios. In this work we retrieve the atmospheres of six UHJs (WASP-76~b, MASCARA-4~b, MASCARA-2~b, WASP-121~b, HAT-P-70~b and WASP-189~b) with ESPRESSO and HARPS-N/HARPS observations, exploring trends in eleven neutral species and dynamics. While Fe abundances agree well with stellar values, Mg, Ni, Cr, Mn and V show more variation, highlighting the difficulty in using a single species as a proxy for metallicity. We find that Ca, Na, Ti and TiO are under-abundant, potentially due to ionisation and/or night-side rain-out. Our retrievals also show that relative abundances between species are more robust, consistent with previous works. We perform spatially- and phase-resolved retrievals for WASP-76~b and WASP-121~b given their high signal-to-noise observations, and find the chemical abundances in each of the terminator regions are broadly consistent. We additionally constrain dynamics for our sample through Doppler shifts and broadening of the planetary signals during the primary eclipse, with median blue shifts between \sim0.9-9.0~km/s due to day-night winds. Furthermore, we constrain spectroscopic masses for MASCARA-2~b and HAT-P-70~b consistent with their known upper limits, but we note that these may be biased due to degeneracies. This work highlights the importance of future HRS studies to further probe differences and trends between exoplanets.Comment: 26 pages, 11 figures, 5 tables, published in A

    Constraints on atmospheric water abundance and cloud deck pressure in the warm Neptune GJ 3470 b via CARMENES transmission spectroscopy

    Get PDF
    Observations of cooler atmospheres of super-Earths and Neptune sized objects often show flat transmission spectra. The most likely cause of this trend is the presence of aerosols (i.e. clouds and hazes) in the atmospheres of such objects. High-resolution spectroscopy provides an opportunity to test this hypothesis by targeting molecular species whose spectral line cores extend above the level of such opaque decks. In this work, we analyse high-resolution infrared observations of the warm Neptune GJ 3470 b taken over two transits using CARMENES (R ∼ 80,000) and look for signatures of H2O (previously detected using HST WFC3+Spitzer observations) in these transits with a custom pipeline fully accounting for the effects of data cleaning on any potential exoplanet signal. We find that our data are potentially able to weakly detect (∼
    corecore