9,951 research outputs found
Recommended from our members
Evidence that indirect inhibition of saccade initiation improves saccade accuracy
Saccadic eye-movements to a visual target are less accurate if there are distracters close to its location (local distracters). The addition of more distracters, remote from the target location (remote distracters), invokes an involuntary increase in the response latency of the saccade and attenuates the effect of local distracters on accuracy. This may be due to the target and distracters directly competing (direct route) or to the remote distracters acting to impair the ability to disengage from fixation (indirect route). To distinguish between these we examined the development of saccade competition by recording saccade latency and accuracy responses made to a target and local distracter compared with those made with an addition of a remote distracter. The direct route would predict that the remote distracter impacts on the developing competition between target and local distracter, while the indirect route would predict no change as the accuracy benefit here derives from accessing the same competitive process but at a later stage. We found that the presence of the remote distracter did not change the pattern of accuracy improvement. This suggests that the remote distracter was acting along an indirect route that inhibits disengagement from fixation, slows saccade initiation, and enables more accurate saccades to be made
Design and development of the sEMG-based exoskeleton strength enhancer for the legs
This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed,3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are usedcoherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus,the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional liftto provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper
A guide to health
Having great health is a desire we all have. We can say that health is our greatest asset! It is not necessary to list the multitude of advantages that good health brings us. And it is worth noting that in order to have good health, basic care that is relatively easy to be experienced is necessary. Check out some of them below and make an assessment: do you take the most basic care to have good health?Having great health is a desire we all have. We can say that health is our greatest asset! It is not necessary to list the multitude of advantages that good health brings us. And it is worth noting that in order to have good health, basic care that is relatively easy to be experienced is necessary. Check out some of them below and make an assessment: do you take the most basic care to have good health
Improved Approximation Algorithms for Stochastic Matching
In this paper we consider the Stochastic Matching problem, which is motivated
by applications in kidney exchange and online dating. We are given an
undirected graph in which every edge is assigned a probability of existence and
a positive profit, and each node is assigned a positive integer called timeout.
We know whether an edge exists or not only after probing it. On this random
graph we are executing a process, which one-by-one probes the edges and
gradually constructs a matching. The process is constrained in two ways: once
an edge is taken it cannot be removed from the matching, and the timeout of
node upper-bounds the number of edges incident to that can be probed.
The goal is to maximize the expected profit of the constructed matching.
For this problem Bansal et al. (Algorithmica 2012) provided a
-approximation algorithm for bipartite graphs, and a -approximation for
general graphs. In this work we improve the approximation factors to
and , respectively.
We also consider an online version of the bipartite case, where one side of
the partition arrives node by node, and each time a node arrives we have to
decide which edges incident to we want to probe, and in which order. Here
we present a -approximation, improving on the -approximation of
Bansal et al.
The main technical ingredient in our result is a novel way of probing edges
according to a random but non-uniform permutation. Patching this method with an
algorithm that works best for large probability edges (plus some additional
ideas) leads to our improved approximation factors
Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography Organ-based Tube Current Modulation Technique
Purpose
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison.
Methods
Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated.
Results
ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%â20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA.
Conclusions
ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol
Sift Algorithm for Iris Feature Extraction
Iris recognition is proving to be one of the most reliable biometric traits for personal identification In fact iris patterns have stable invariant and distinctive features for personal identification Reliable authorization and authentication are becoming necessary for many everyday applications Iris recognition has been paid more attention due to its high reliability in personal identification But iris feature extraction is easily affected by some practical factors such as inaccurate localization occlusion and nonlinear elastic deformation The objective of the study and proposed work is to adapt the increasing usage of biometric systems which can reduce the iris preprocessing and describe iris local properties effectively and have encouraging iris recognition performance This work presents an efficient algorithm of iris feature extraction based on modified scale invariant feature transform algorithm SIF
- âŠ