444 research outputs found

    An Experimental Study of Cryptocurrency Market Dynamics

    Full text link
    As cryptocurrencies gain popularity and credibility, marketplaces for cryptocurrencies are growing in importance. Understanding the dynamics of these markets can help to assess how viable the cryptocurrnency ecosystem is and how design choices affect market behavior. One existential threat to cryptocurrencies is dramatic fluctuations in traders' willingness to buy or sell. Using a novel experimental methodology, we conducted an online experiment to study how susceptible traders in these markets are to peer influence from trading behavior. We created bots that executed over one hundred thousand trades costing less than a penny each in 217 cryptocurrencies over the course of six months. We find that individual "buy" actions led to short-term increases in subsequent buy-side activity hundreds of times the size of our interventions. From a design perspective, we note that the design choices of the exchange we study may have promoted this and other peer influence effects, which highlights the potential social and economic impact of HCI in the design of digital institutions.Comment: CHI 201

    The genetics of cortical organisation and development: A study of 2,347 neuroimaging phenotypes

    Get PDF
    Our understanding of the genetic architecture of the human cerebral cortex is limited both in terms of the diversity of brain structural phenotypes and the anatomical granularity of their associations with genetic variants. Here, we conducted genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,843 individuals from the UK Biobank and the ABCD cohorts. These phenotypes include cortical thickness, surface area, grey matter volume, and measures of folding, neurite density, and water diffusion. We identified 4,349 experiment-wide significant loci associated with global and regional phenotypes. Multiple lines of analyses identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with surface area and volume specifically are associated with cephalic disorders. Finally, we identified complex inter-phenotype and inter-regional genetic relationships among the 13 phenotypes which reflect developmental differences among them. These analyses help refine the role of common genetic variants in human cortical development and organisation

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Peer influence in network markets: a theoretical and empirical analysis

    Get PDF
    Network externalities spur the growth of networks and the adoption of network goods in two ways. First, they make it more attractive to join a network the larger its installed base. Second, they create incentives for network members to actively recruit new members. Despite indications that the latter "peer effect" can be more important for network growth than the installed-base effect, it has so far been largely ignored in the literature. We address this gap using game-theoretical models. When all early adopters can band together to exert peer influence-an assumption that fits, e.g., the case of firms supporting a technical standard-we find that the peer effect induces additional growth of the network by a factor. When, in contrast, individuals exert peer influence in small groups of size n, the increase in network size is by an additive constant-which, for small networks, can amount to a large relative increase. The difference between small, local, personal networks and large, global, anonymous networks arises endogenously from our analysis. Fundamentally, the first type of networks is "tie-reinforcing," the other, "tie-creating". We use survey data from users of the Internet services, Skype and eBay, to illustrate the main logic of our theoretical results. As predicted by the model, we find that the peer effect matters strongly for the network of Skype users-which effectively consists of numerous small sub-networks-but not for that of eBay users. Since many network goods give rise to small, local networks
    • …
    corecore