41 research outputs found

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Perturbation theory for the one-dimensional optical polaron

    Full text link
    The one-dimensional optical polaron is treated on the basis of the perturbation theory in the weak coupling limit. A special matrix diagrammatic technique is developed. It is shown how to evaluate all terms of the perturbation theory for the ground-state energy of a polaron to any order by means of this technique. The ground-state energy is calculated up to the eighth order of the perturbation theory. The effective mass of an electron is obtained up to the sixth order of the perturbation theory. The radius of convergence of the obtained series is estimated. The obtained results are compared with the results from the Feynman polaron theory.Comment: 9 pages, 2 figures, RevTeX, to be published in Phys. Rev. B (2001) Ap

    Path integrals approach to resisitivity anomalies in anharmonic systems

    Full text link
    Different classes of physical systems with sizeable electron-phonon coupling and lattice distortions present anomalous resistivity behaviors versus temperature. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. A path integral model is developed to select the class of atomic oscillations which mainly contributes to the partition function and the electrical resistivity is computed in a number of representative cases. We argue that the common origin of the observed resistivity anomalies lies in the time retarded nature of the polaronic interactions in the local structural instabilities.Comment: 4 figures, to appear in Phys.Rev.B, May 1st (2001

    A scalable big data approach for remotely tracking rangeland conditions

    Get PDF
    Rangelands, covering half of the global land area, are critically degraded by unsustainable use and climate change. Despite their extensive presence, global assessments of rangeland condition and sustainability are limited. Here we introduce a novel analytical approach that combines satellite big data and statistical modeling to quantify the likelihood of changes in rangeland conditions. These probabilities are then used to assess the effectiveness of management interventions targeting rangeland sustainability. This approach holds global potential, as demonstrated in Mongolia, where the shift to a capitalist economy has led to increased livestock numbers and grazing intensity. From 1986 to 2020, heavy grazing caused a marked decline in Mongolia’s rangeland condition. Our evaluation of diverse management strategies, corroborated by local ground observations, further substantiates our approach. Leveraging globally available yet locally detailed satellite data, our proposed condition tracking approach provides a rapid, cost-effective tool for sustainable rangeland management

    Body size and digestive system shape resource selection by ungulates : a cross-taxa test of the forage maturation hypothesis

    Get PDF
    The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.DATA AVAILABILITY STATEMENT : The dataset used in our analyses is available via Dryad repository (https://doi.org/10.5061/dryad.jsxksn09f) following a year-long embargo from publication of the manuscript. The coordinates associated with mountain zebra data are not provided in an effort to protect critically endangered black rhino (Diceros bicornis) locations. Interested researchers can contact the data owner (Minnesota Zoo) directly for inquiries.https://wileyonlinelibrary.com/journal/elehj2022Mammal Research InstituteZoology and Entomolog

    Fast, multi-wavelength, efficiency-enhanced pixelated devices based on InGaAs/InAlAs quantum-well

    No full text
    Several applications utilizing either synchrotron or conventional light sources require fast and efficient pixelated detectors. In order to cover a wide range of experiments, this work investigates the possibility to use InGaAs/InAlAs quantum well devices as photon detectors for a broad range of energies. Owing to their direct, low-energy band gap and high electron mobility, such devices may be used also at room temperature as multi-wavelength sensors from visible light to hard X-rays. Furthermore, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times.Samples were grown by solid source molecular beam epitaxy on GaAs substrates. Metamorphic In0.75Ga0.25As/ In0.75Al0.25As heterostructures were obtained by relaxing the strain due to the lattice mismatch in the substrate by means of a composition-graded buffer layer. A two-dimensional electron gas forming in an In0.75Ga0.25As quantum well is sandwiched between In0.75Al0.25As barriers and is modulation-doped by a Si \u3b4 on its top. The samples have been pixelated by using standard photolithographic techniques. In order to fit commercially available readout chips, a pixelated sensor with pixel size of 172 7 172 \u3bc m2 is currently under development. A small-scale version of the pixelated quantum well sensor has been preliminary tested with 100-fs-wide laser pulses and X-ray synchrotron radiation. The reported results indicate that these sensors respond with 100-ps rise-times to ultra-fast laser pulses. Synchrotron X-ray tests show how these devices exhibit high charge collection efficiencies, which can be imputed to the charge-multiplication effect of the 2D electron gas inside the well

    Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells

    No full text
    Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 \ub5m
    corecore