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Rangelands, covering half of the global land area, are critically degraded by unsustainable use and
climate change. Despite their extensive presence, global assessments of rangeland condition and
sustainability are limited. Here we introduce a novel analytical approach that combines satellite big
data and statistical modeling to quantify the likelihood of changes in rangeland conditions. These
probabilities are then used to assess the effectiveness of management interventions targeting
rangeland sustainability. This approach holds global potential, as demonstrated in Mongolia, where
the shift to a capitalist economy has led to increased livestock numbers and grazing intensity. From
1986 to 2020, heavy grazing caused a marked decline in Mongolia’s rangeland condition. Our
evaluation of diverse management strategies, corroborated by local ground observations, further
substantiates our approach. Leveraging globally available yet locally detailed satellite data, our
proposed condition tracking approach provides a rapid, cost-effective tool for sustainable rangeland
management.

Rangelands, extensively managed grazing lands usually dominated by
natural or semi-natural non-forest vegetation1, occupy around half of the
world’s land surface (Fig. 1). They provide important ecosystem services to
society including cultural identity, livestock forage, climate, and disease
regulation2. Indeed, inexpensive rangeland feed is critical to the global
production of affordable meat, milk products, leather, and wool3. Over 2.7
billion people live in or are supported by rangelands, a large proportion of
which are in Low- andMiddle-Income Countries4 (Fig. 1). Rangelands also
providehabitat for thousands of threatened, unique, andoftenwide-ranging
species (Fig. 1). For example, there are over 1000 threatened species living in
the Australian rangelands according to the latest International Union for
Conservation of Nature (IUCN) Red List5.

The importance of rangelands to people places them under increasing
pressure from unsustainable land practices, which with other stressors such
as climate change and invasive species, have led to their severe land
degradation over many parts of the world (Fig. 1). Many rangelands have
turned to dust after loss of perennial grasses and subsequent erosion (e.g.,

fast increasing bare ground in northern Kenyan rangelands since 19906).
Degradation-induced loss of rangelands not only threatens the natural
world, the plants and animals that depend on rangeland habitats, but also
the ecological well-being, economic prosperity, and cultural diversity of the
global human community7. It thus hampers our ability to reach multiple
Sustainable Development Goals (SDGs) including poverty alleviation, food
security, and protecting biodiversity on land.

Assessing the current state and temporal dynamics of rangelands is
crucial for their sustainable management and conservation. While satellite
imagery has been leveraged for these insights, the applications of such
methods often involve compromises between temporal coverage, spatial
resolution, and geographic scope (refer to Table S1). For instance, the US
RangelandAnalysis Platform (USRAP) utilizes the comprehensive Landsat
archive to provide moderate-resolution (30m) annual mapping from 1984
to 2017 across the USA8. Its expansion beyond American regions is con-
strained by themachine learning approach’s need for extensive field data as
training samples. In contrast, the Australian Rangeland and Pasture
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Productivity (AusRAPP) platform, drawing onMODISdata, offers broader
global coverage9. However, it faces limitations due to the inherent con-
straints of MODIS imagery, including a reduced spatial resolution (500m)
and a shorter temporal span (available since 2000). Meanwhile, other
existingmethods projecting global rangeland changes rely onmodeled data,
presenting long-term forecasts at even coarser resolutions (>25 km)10,11.
Although finer mapping techniques (e.g., ≤30m pixels) exist for diverse
ecosystems (e.g., forests, croplands, and wetlands12–14), a comparable high-
resolution framework for global rangeland analysis remains absent. Our
study aims to bridge this gap, laying the foundation for advanced rangeland
monitoring and management strategies (see Table S1).

Rangeland condition tracking needs to be done in a way that can
effectively support decision-making for greater sustainability. This is par-
ticularly challenging for rangelands which, compared with forests, tend to
exhibit fewer natural thresholds (e.g., forest conversion) under their
dominant use (grazing) and experience high inter- and intra-annual
variability predominantly due to changes in rainfall. Effective decision
support therefore requires a flexible but robust statistical approach that can
illuminate when changes of concern to decision-makers are observed and
how likely these are.

To address the above mentioned gaps in the field, this study
developed a novel analytical approach to map rangeland condition
changes at 30 m spatial resolution. We illustrated this approach over
Mongolian rangelands, which can further extend globally in the future.
Based on the new capabilities of the long-term global Landsat image
archive, we incorporated dynamic statistical modeling into the proposed
approach to track the rangeland condition changes as well as to quantify
the likelihood of such changes. Therefore, our approach facilitates the use
of accumulated satellite data to monitor multiple levels of change in the
rangeland system (as defined by end users) and to identify the support for
each level of change given the data. Such information can then be used to
quantify management impact and define a level of certainty regarding

this impact, delivering improved knowledge for global rangeland man-
agement and conservation investments.

Results
Initial status of rangeland condition
Identifying rangeland condition change requires the determination of a
prior or initial condition to assess this change against. We used a bench-
marking method to identify the condition of rangelands prior to 1990,
which quantifies local rangeland productivity relative to the potential pro-
ductivity in the same Land Capability Class (LCC) of homogeneous lands
with similar biogeophysical capability under similar climate conditions. A
total of 4918 LCCs were defined across the continent of Asia and 1962
classes over Mongolia (Fig. 2a). Then, we identified areas within each LCC
that possessed theminimum(lowest tenthpercentile) ormaximum(highest
tenth percentile) productivity performance possible for the LCC they
belonged to (red and green areas respectively in Fig. 2b). Areas in red in
Fig. 2b indicate the lowest production relative to their potential, assuming
the presence of rangeland vegetation. This suggests that these rangeland
areas might have already experienced severe land degradation at the
beginning of our study period. As a result, pixels within these regions that
have ‘stable condition’ modeled in our subsequent analysis indicate ran-
gelands that stay consistently degraded during the study time. In contrast,
areas in green in Fig. 2b show rangelands with the highest relative pro-
duction, in otherwords reaching nearly their full potential within each LCC.

Rangelands varied acrossMongolia in their initial conditions relative to
the maximum productivity possible within each LCC (Fig. 2c), which pre-
sent near full productivity potential in the center of the country while
reductions in parts of northern and southern Mongolia prior to 1990. In
addition, transitions in land cover withinMongolia from 1992 to 2020 were
investigated with land cover yearly data and observed to be few, with only a
minor proportion of rangelands in the north (almost none in the south)
being converted to other land cover types (Fig. 2d). These areas were

Fig. 1 | Rangelands. Global distribution map (500 m, 2023; MCD12Q1), a snapshot of significance, and examples of healthy vs degraded rangelands in Mongolia.
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included in our rangeland condition change analysis but excluded in the
process of our management assessment.

Trajectories of rangeland condition change
The spatial distributions of overall changes in rangelands across Mongolia
were derived from the 35-yearwindowof the entire study time (1986–2020),
and represented by theRGBcomposited belief images of the three condition
models (Fig. 3a). In contrast to the spatial patterns of initial condition that
indicated maximum productivity in the center of Mongolia and lower
productivity elsewhere prior to 1990 (Fig. 2c), we found rangelands across
the center of Mongolia with dense population and intensive grazing activ-
ities showed overall higher belief in ‘decline’ (red areas in Fig. 3a) compared
to other areas. Specifically, most of the southern Mongolia desert region,
where vegetationdynamics are beingdrivenby climate variability, presented
improved rangeland conditions for the past 35 years, with the green color
indicating a high belief in ‘increase’ condition.

The annual time series of statistical beliefs in decline, increase, or stable
rangeland status were derived from the accumulated vegetation condition

changes during each previous decade (Fig. 3b), which may show details of
the overall condition changes geographically presented in Fig. 3a. Such time
series of beliefs in condition changes enable quantitative assessment of
rangeland management impacts over both large and small areas. For
example, the black box indicated in Fig. 3b is a protected area locatedwithin
an overall improved condition environment. For this protected area there
was adramatic jump in the trajectoryof beliefs in ‘increase’ (red circledpoint
in Fig. 3b), which may indicate the implementation of a successful man-
agement intervention in 2012.

Management impacts
We evaluated the impacts of rangelandmanagement within each protected
area individually and then synthesized the findings to compare the effec-
tiveness of various management strategies implemented across Mongolia.
With the abovementioned map series of beliefs in the ‘increase’ condition,
management impacts were quantified as the difference of beliefs in the
‘increase’ condition over each protected area between the prior- and post-
management periods. Since rangelands have been protected across

Fig. 3 | Spatio-temporal condition changes of rangelands inMongolia from 1986
to 2020. a RGB composite map of beliefs in ‘increase’, ‘stable’, and ‘decline’ con-
ditions modeled from the 35-year window of the entire study time (n.b., the vertical
stripes were due to the mosaic of satellite image scenes). bMap series stack of beliefs
in ‘increase’ from decadalmoving-window sliding one year step each time, with each

year on the x-axis representing the belief in rangeland productivity increase during
its previous 10-year. For example, a dramatic jump in the statistical belief (circle in
red) in 2012 shows an improved rangeland condition during 2003–2012.

Fig. 2 | Rangeland initial condition. a Land capability classes (n.b., colors are only
for illustration purposes and not enough for all LCCs). b Extremes of initial ran-
geland productivity performance (lowest and highest tenth percentiles) across the

continent of Asia. c Initial rangeland productivity across Mongolia, scaled by their
maximum production. d Land cover transitions over Mongolia from 1992 to 2020.
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Mongolia by three levels of management (National Protected Areas with
four sub-management strategies, NPAs; Local Protected Areas, LPAs; and
Community-Based Organisation, CBO), we focused our analysis on the
country-wide effects of these different management strategies.

The spatial distributions of the belief difference in ‘increase’ over local
protected areas before and after the management are shown in Fig. 4a, with
green-colored areas indicating improved rangeland condition after the
management while those in red presented no improvement.We found over
74% of the LPAs showed higher belief in the ‘increase’ condition after the
management applied. However, such improvement over a large proportion
of the protected areas could have resulted from the combined impacts of
both natural climate and human management interventions. Indeed, we
found there has been an increasing trend in rainfall across Mongolia since
2011 that may have positively impacted rangelands over the last decade
(Fig. 4b). As a result, we need to separate the management impact from
those due to inter-annual climatic variability on rangelands to better
understand the benefits from rangeland management interventions.

Using all areas under the same LCC as a reference, we removed the
rainfall effect by subtracting belief in the ‘increase’ of protected areas from
that of the reference sites for the pre- and post-management periods
(“Methods” section). We found after the removal of the rainfall effect, the
percentage of local protected areas showing higher belief for the post-
management period reduced to around 25% (Fig. 4c). This indicates the
ecological improvement in most of the local protected areas was due to
climate variability (i.e., rainfall increase) rather than management effects.
More specifically, 25% of local protected areas showed condition
improvement linked to management, rainfall contributed to the vegetation
increase for half of the areas, and the other 25% didn’t show significant
improvement under either climate or management effect.

Comparison among different management strategies
In contrast to local protected areas, the national protected areas (NPA)
presented 100% improvement under the context of both management and
climate effects (Fig. 5a); 77% of these benefits were due to management

alone after rainfall correction (Fig. 5b). Being both equally distributed across
Mongolia, the management of national protected areas outperformed that
of the local protected areas, with highermedian belief difference in ‘increase’
and less variance (Fig. 5c). We also found the earlier NPA management
establishment was likely to link with higher belief in ‘increase’ after the
management (Fig. 5c). In addition, the protected areas on both levels
showed land degradation around Mongolia’s capital city of Ulaanbaatar,
where intensive grazing activities occur such as areas in the central and
eastern grassland as well as northern mountain grassland ecoregions
(Figs. 4c and 5b).

The effectiveness of the four different sub-management strategies
under the NPAmanagement was also analyzed in this study, including the
‘strictly protected area’, ‘national parks’, ‘nature reserve’, and ‘natural and
historical monument areas’. We found overall improvement due to all four
NPA strategies, with the median belief difference in ‘increase’ above zero
between before and after all the management applied (Fig. 5d). ‘Strictly
protected areas’ were observed to have the most effective management
among all four, followed by the ‘national parks’ while ‘nature reserve’ and
‘natural and historical monument areas’ showed relatively lower effective-
ness. The improved rangeland condition in the community-based organi-
zation areas (highlighted in red polygons in Fig. 5a, b) was observed to be
solely attributed to rainfall. However, the management of these areas
investigated in our study was only recently implemented (late 2018 and
2020), which likely limited the extent of any potential impact on rangeland
conditions.

Discussion
The validation of our rangeland condition changes and management
assessments, using a triad of methods informed by field observations and
regional reports on Mongolia’s rangeland health, yielded coherent results.
Firstly, our statistical beliefs in ‘increase’, ‘stable’, and ‘decline’ conditions
showed strong spatial concordance with the observed degradation levels
across Mongolia (Fig. 6a). For instance, areas with high beliefs in ‘decline’
predominantly encompassed locations of fully and heavily degraded field

Fig. 4 | Belief difference in ‘increase’ between the prior- and post-management
periods. a Spatial distributions of the combined impacts from management and
climatic variability on local protected areas. bAnnual rate of change in precipitation
across Mongolia during 2011–2020, compared to time series of spline-smoothed

yearly mean precipitation over four local protected areas (labeled as S1, S2, S3, and
S4) from 1986 to 2020. c Spatial distributions of the sole management impacts on
local protected areas.
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observations, whereas areas with low beliefs in ‘decline’ largely corre-
sponded with healthy field sites. Furthermore, the density distribution plot
of validation points (Fig. 6b), which illustrates the beliefs in ‘decline’ across
different degradation levels, unveiled a discernible pattern: the central ten-
dency and dispersion indicate that areas with more severe degradation
observed in the field are associated with higher beliefs in ‘decline’ in our

analysis. Initially, Mongolian rangelands (1986–1990) exhibited minimal
productivity reduction in central and eastern regions (Fig. 2c), yet these
areas laterdisplayedhighbeliefs in ‘decline’ from1986 to2016 (Fig. 6a). This
shift could be attributed to Mongolia’s economic transition post-1990,
which saw a surge in subsistence herding and migration towards provinces
near Ulaanbaatar due to job losses and a tripling of livestock numbers15.

Fig. 6 | Spatial alignment between field observations and mapped rangeland
condition changes across Mongolia. a Rainfall corrected belief in the ‘decline’map
over a 31-year period of 1986–2016 with field observations of five different

degradation levels acquired in 2016. b Corresponding rainfall corrected beliefs in
‘decline’ for all the validation points across different degradation levels.

Fig. 5 | Comparison of different management strategies. a Spatial distributions of
the combined impacts from management and climatic variability on national pro-
tected areas. b Spatial distributions of the sole management impacts on national
protected areas. Boxplots for c local (LPA) and national (NPA) protected areas
colored by the time of management establishment and d protected areas of the four

different management strategies under the NPA management (SPA ‘strictly pro-
tected area’, NP ‘national parks’, NR ‘nature reserve’, NHM ‘natural and historical
monument areas’). Values in (a–d) are belief differences in ‘increase’ between the
prior- and post-management periods (i.e., after the correction of the climatic effect).
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The confusionmatrix analysis underlines our model’s proficiency and
challenges in classifying rangeland conditions (Table 1). The matrix indi-
cates a User’s Accuracy of 76.7% for ‘Degradation’ and 81.8% for ‘Healthy’,
with correspondingProducer’sAccuracies of 71.7%and85.4%, respectively.
This reflects a solid capability in identifying both degraded and healthy
rangelands, supported by an Overall Accuracy of 79.9% (±2.56). However,
the reduced accuracy observed in the ‘Degradation’ category underscores
the complexities of accurately identifying areas of true degradation. This
may be attributed to the limitations of remote sensing to detect early-stage
degradation, the masking effects of human activity and climate change on
degradation signals, and our preliminary application of basic models with a
theoretical 20% threshold for change. This threshold merits adjustment by
rangeland managers utilizing their practical insights.

Our results from assessing the impact of different rangeland man-
agement strategies showed good agreement with the impacts of manage-
ment strategies described in the regional reports16. For example, the four
categories of management applied to the national protected areas varied in
their effectivenesswith ‘strictly protected areas’ showing themost benefits to
vegetation increase in rangelands followed by ‘national parks’, which out-
performed ‘nature reserve’ and ‘natural and historical monument areas’
(Fig. 5d). This is because ‘strictly protected areas’ and ‘national parks’ have
been managed by different protected area administrations from the other
two, the former of which received more funding from the central govern-
ment to have better governance16,17. This was further confirmed by the
qualitative assessments of previous government research on the comparison
among the four management strategies over different small regions via the
Management Effectiveness Tracking Tool developed by WWf 18–20. In
addition, we found the management of national protected areas had much
more positive impacts on protected rangelands than that implemented for
local protected areas. Thismay be attributed to the limitedfinancial capacity
of local governments (Province and county levels), to provide sufficient
funding for the management of local protected areas17. As we observed,
however, the time since management establishment is an important factor
in the rangeland condition trend (Fig. 5c), suggesting someof thedifferences
betweennational and local protected areas capturedhere could be attributed
to the earlier implementation of the national protected areas. Moreover,
results from this studymight be subject touncertainties stemming fromdata
limitations, methodological constraints, and local environmental factors.
For example, theuse of LandCapabilityClass, designed to assess agricultural
potential based on soil properties, lacks specific linkage to ecosystem
functionality or vegetation communities. As global data andmethodologies
evolve, further efforts are necessary to refine or replace LCC, however, our
approach is flexible to such adaptations. Similar to conventional remote
sensing methods, our study’s focus on the greenness index mainly captures
grassland cover changes, possibly missing rangeland areas with significant
woody and invasive species encroachment. Future efforts could integrate
additional field data on invasive species abundance, and apply ecological
models to understand the spread and impact of invasive species on grass-
lands. In general, the ability to incorporate more diverse data sources will
allow for a more comprehensive management impact analysis.

The proposed approach in this study consists of simple but robust
statistical algorithms, which can be achieved by satellite observations and
spatial products that are globally freely available without being dependent

on the field observations. Thus, it has great future potential to extend to a
global scale with even higher spatial resolution satellite imagery (e.g.,
sentinel-2 or planet) via cloud computing platforms such as GEE. In
addition, this study enables flexible models of change to be identified. First,
the linear percentage change can be replaced by a non-linear if needed.
Further, the level of changeof interest, e.g., ±20%investigated in this study, is
flexible, and any, ormultiple, values could be assigned, andmore than three
models could be identified and assessed within this approach. The assess-
ment window designed in this study is also flexible and could track a single
year or any length up to the entire period of the data. There is a well-
documented concern with methods that set a binary threshold (e.g., a p-
value) to assess whether an area is degraded or its condition has changed21.
This study avoids using such thresholds and instead focuses on likelihoods
associated with different extents of change. Avoiding a standardized
approach to defining rangeland conditions provides flexibility, so end users
can look for changes and levels of confidence in those changes, which reflect
their own beliefs and choices about sustainability.

Conclusions
Despite their vast extent and the crucial resources that rangelands provide to
people and nature, we currently have a limited accounting of rangeland’s
condition. In this study, we proposed a novel analytical approach that does
not compromise on spatial resolution or time scale and avoids standardized
definitions of rangeland condition change. This approach links three fea-
tures critical for a significant advance in rangeland research: (1) identifying
the initial state of rangeland condition before the satellite era; (2) mapping
rangeland condition changes and estimating the likelihood of such changes
at high spatial resolution (30 × 30m) over long-time horizons (40 years);
and (3) quantifying the impacts of different large-scale management on
rangeland condition. Our initial findings show the new approach can be
applied over the rangelands of Mongolia to detect and identify landscape
changes especially in vegetation cover, at scales that can be used to inform
the development and assessment of sustainable rangelands management
programs. Details of these management programs need to be regionally
specific and are beyond the scope of this work.

Methods
The proposed approach encompasses a four-stage process, as outlined
below (Fig. 7), and has been developed utilizing the Google Earth Engine
(GEE) platform. The data employed in this study are freely accessible on a
global scale, with themajority pre-existingwithinGEE, while the remainder
has been uploaded to the user’s asset space on GEE.

Study area
We used Mongolian rangelands as a case study to test our proposed
approach, which is an area that covers 80%of the country (over 120million
hectares). Rangelands in Mongolia support approximately one million
nomadic herders (30%of the population) and provide refuge for a variety of
rare andwide-rangingwildlife22. Rangelandsmaybedegradingdue to loss of
traditional grazing practices, and increases in livestock numbers (tripled
during the past three decades), combined with impacts of mining and
infrastructure development. The degradation caused by these impacts has
been accelerated by climate change and population growth23. In recognition

Table 1 | Accuracy statistics of the rangeland condition change map from 1986 to 2016 derived from the confusion matrix
analysis

Reference (ground truth) Accuracy assessmenta, %

Class Degradation Healthy UA PA OA BA

Degradation 229 91 76.7 (±4.20) 71.7 (±4.32) 79.9 (±2.56) 78.5

Healthy 118 532 81.8 (±2.96) 85.4 (±2.77)

Standard errors of the estimates are provided in parentheses.
aUser’s Accuracy (UA), Producer’s Accuracy (PA), Overall Accuracy (OA) and Balance Accuracy (BA) are described in Table 1.
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of the importance of sustainable rangeland use, theMongolian government
has been working with The Nature Conservancy to strengthen the man-
agement of protected areas to balance conservation anddevelopment. Three
levels of land protection at different spatial scales, covering most of Mon-
golia, have been gradually established since the 1990s including National
Protected Areas (NPA), Local Protected Areas (LPA), and more recently,
Community-Based Organization (CBO) areas24 (Table 2). The large extent
of rangelands with a long-term record of different rangeland management

interventions makesMongolia an ideal region to test our analysis for global
rangeland application.

Landsat data and vegetation index selection
We used the entire Landsat archive of surface reflectance data from 1986 to
2020 (Table 2), which have been corrected for atmospheric, reflectance,
topographic, and satellite sensor effects25. Spatially, 129 Landsat scenes were
required from World Reference System path 122–144 and rows 23–31 to

Fig. 7 | Approach flowchart of this study.

Table 2 | Summary of data used in this study

Name Purpose Resolution Time Sourcea

Landsat Main data 30m/annual median 1986–2020 GEE data catalog

Protected areas Management assessment NA 1995–2020 TNC Mongolia

Precipitation Climate assessment 0.05°/annual sum 1986–2020 GEE data catalog

Land cover land capability classification 300m/annual 1992–2020 GEE data catalog

Soil units land capability classification 250m/NA NA GEE data catalog

Terrain land capability classification 250m/NA NA GEE data catalog

Climate land capability classification 1 km/annual 1986–2020 GEE data catalog

Field data Validation NA 2016 Mongolian Government
aGoogle Earth Engine (GEE) and The Nature Conservancy (TNC) are described in Table 2.
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mosaic and cover the entire Mongolia. This resulted in the acquisition of
totally over 100,000 images from GEE’s median across different Landsat
sensors, including the Landsat Thematic Mapper (TM, Landsat 4-5), the
Enhanced Thematic Mapper Plus (ETM+, Landsat 7) and the Operational
Land Imager (OLI, Landsat 8) at 16 days and 30m resolutions. The quality
assessment flags provided in Tier 1, Collection 1 product were used to
remove undesirable elements such as aerosol, cloud, cloud shadow, and
inundation26,27.

Initially vegetation index, as a biophysical measure for changes in the
amount of green vegetation/photosynthesis in rangelands28,29, was used in
this analysis to demonstrate the feasibility of the research design and
approach over the spatial and temporal scales. This will provide a basis to
transition to other products such as vegetation fractional cover, which with
the inclusion of field observations may be more effectively linked to local
management activities but are not currently available at high resolution and
globally 9. The Enhanced Vegetation Index (EVI) was developed as an
alternative vegetation index of the Normalized Difference Vegetation Index
(NDVI) with reduced soil and atmospheric influences and improved sen-
sitivity in high biomass regions30. However, EVI requires a blue band, which
can be sensitive to variations in the viewing geometry, surface albedo, sun
angle, and terrain31. For example, here we found such erratic blue behavior
often causes upward spikes in EVI overmany parts ofMongolia. To address
this issue,we chose to use two-bandEVI2 as a surrogate of EVI to avoid data
noise over complex environments such as landscapes inMongolia. EVI2has
been proven to be a good indicator for above-ground biomass32, which has
been widely used for Mongolian rangeland studies33,34. EVI2 was calculated
as below 35:

EVI2 ¼ 2:5×
ρnir � ρred

ρnir þ 2:4× ρred þ 1 ð1Þ

Where ρnir and ρred represent surface reflectance in the near-infrared and
red bands. Annual composites of EVI2 for the period of 1986–2020 were
then computed for this analysis based on the median of the year, which is a
specific data point instead of an averaged or blended value and robust
against extreme values and outliers25.

Management data
Rangeland protected area data provided by TNC Mongolia was used for
management assessment in this study, which was applied during the last
three decades to balance conservation and development in Mongolia
(Table 2). They are under three levels of management strategies, including
National Protected Areas (NPA), Local Protected Areas (LPA), and
Community-BasedOrganization areas (CBO). TheMongolian government
aims to establish 30% of the country’s land as national protected areas and
has already reached 20%. TNC Mongolia has been collaborating with the
TNC’s global team over the past decade to conduct ecoregional assessments
and landscape-level planning across Mongolia, helping central and local
governments to establish new protected areas. Traditional grazing of live-
stock is currently allowed in all local protected areas and in parts of national
protected areas except the strictly protected NPAs. In addition, the Mon-
golian government and TNC support local communities to actively parti-
cipate in the development of rangeland management plans within local
protected areas and CBO areas (in many cases these areas overlap). Com-
munities can improve local rangeland management by implementing their
traditional sustainable grazing practices, limiting the inflow of herders from
other areas, and preventing the establishment of new mining concessions.

Precipitation
We obtained daily precipitation data onGEE fromClimate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) to assess the inter-
annual climatic variability over Mongolia (Table 2). CHIRPS is a quasi-
global rainfall dataset from 1986 to the present, spanning 50°S–50°N36,37. It
incorporates 0.05° resolution satellite imagery with in-situ station data to
create gridded rainfall time series suitable for trend analysis and seasonal

drought monitoring. Annually summed precipitation time series were used
in this analysis.

Biogeophysical data and land capability classification
‘Land capability’ is a widely used concept in agricultural science, indicating
the suitability of the land for a specific use such as rangeland or rain-fed
cultivation38. We used Land Capability Class (LCC) to form the basis for
identifying the rangeland initial condition, which represents areas with
similar land capability under homogeneous biogeophysical and climatic
environments (Table 2). K-Means clustering, which is an unsupervised
machine learning algorithm, was used to classify the LCCs based on unique
and comprehensive layers of independent variables with all data available at
a global scale. This data included: Land cover - Land cover map at 300m
resolution with 22 major classes from 1992 to 2020 provided by the ESA
Climate Change Initiative39, which was derived from five different satellite
missions based on the United Nations land cover classification system; Soil
units - soil taxonomy at 250mwith 12 classes40, which is distribution of the
USDA soil great groups based onmachine learning predictions from global
compilation of soil profiles (>350,000 training points);Terrain - landformat
250m with 5 major classes produced using the improved Hammond
Landform Classification Algorithm41; Climate - Koppen-Geiger climate
zones at 1 km resolution for the period of 1986–202042, which was derived
froman ensemble of 32 climatemodels basedon temperature, precipitation,
potential evapotranspiration, etc with 13 major classes (at 1st and 2nd
levels).

Initial rangeland condition identification
Being confined by the satellite lifespan, remote sensing methods can only
detect lands that have been actively affected by the ongoing processes of
degradation since the 1980s43. This means rangelands with the initial con-
dition of severe land degradationmay show little decline during the satellite
time. As such, identifying the initial condition of rangelands is the crucial
first step for a better understanding of the changes in the condition of these
lands during our study period. To do this, the Local Net Production Scaling
(LNS) was used44, which as a benchmarking method works on condition
that: (1) it is based on the LCC with the same rangeland productivity level,
and (2) non-degraded reference sites exist in each LCC. We thus defined
LCC over the whole continent of Asia instead of Mongolia to ensure there
are enough reference sites. The LNS index was calculated across the aver-
aged annual EVI2 image over the first five years of the study time
(1986–1990), which was derived by scaling the actual EVI2 of each pixel
relative to the higher observedEVI2 value in the frequencydistribution of all
pixels in the same LCC. The areas with full potential and minimum pro-
ductivity performance of each LCC class were estimated by the EVI2 values
at 90th and 10thpercentiles.We set the LNS indexof pixels with EVI2 being
in thebottomand top10thpercentiles to0 and100 respectively to reduce the
effect of very high or very low annual EVI2 values caused by atypical areas
with low frequency (e.g., unmapped cultivation or bare rock). The LNS
indexof theotherpixel percentileswas scaled linearly between these limits as
follows38,45:

If qi≤ q0:1; LNSi ¼ 0; or

If qi≥ q0:9; LNSi ¼ 100; or

If q0:1≤ qi≤ q0:9; LNSi ¼ 100 ðqi� q0:1Þ=ðq0:9� q0:1Þ;
ð2Þ

where q0.1, q0.9 and qi are EVI2 values at 10th, 90th and in between per-
centiles respectively.

Then, areas with LNS < = 10 present the lowest production relative to
their capability, i.e., already under severe land degradation at the start of our
study period. As a result, we set the belief in ‘decline’ as 100% for pixels
within these areas that have ‘stable condition’ modeled in our following
analysis, indicating rangelands under consistent degradation during the
study time instead of being stable.
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Rangeland condition change modeling
Wedefined three rangeland conditionmodels at each Landsat pixel location
area (30 × 30m) to represent the significant change (decline/increase) and
stable conditions of rangelands (Fig. 2). Previous studies showed 10–20%
reduction in land productivity (represented by vegetation greenness) was
observed between degraded and non-degraded areas within arid and semi-
arid regions46,47. Therefore, the three models for Mongolian rangelands in
this analysis were expressed as simple linear equations, i.e., 20% decline or
20% increase or similar asmean from the start to the end of the studyperiod:

If Modelincrease; z ¼ � 20%;

If Modeldecline; z ¼ 20%; and

If Modelstable; z ¼ 0:

Then y ¼ ym × 1þ t×
z
T

� �
ð3Þ

Where y represents the predictedEVI2 value, ym is themeanof annual EVI2
during the study period, t is time at the yearly step, and T is the end year of
the study period. The threshold z for the significant change can bemodified
according to the local environment by end users in the future.

The three defined rangeland condition models were further applied
through a moving-window method, which shifts a kernel of the 10-year
periodover theEVI2 time series of eachpixel, sliding one year step each time
to create an annual belief time series from 1995 to 2020. This allowed
candidate condition models to be dynamically built at each window to
model the rangeland condition changes over time. Rather than the tradi-
tional null hypothesis testing approach with an arbitrary probability
threshold (e.g., P-value < 0.05) that is normally used48, this study used a
formalmodel selection procedure to identify the relative support for each of
the three models described in Eq. (3), given a 10-year time series of EVI2
values for each pixel. Specifically, Akaike Information Criterion (AIC)
weights were calculated for each of the three competingmodels to provide a
quantitative measure of belief (scaled between 0 and 1; all beliefs sum to 1)
for each rangeland condition hypothesis49. AIC uses maximum likelihood
scores as a measure of fit, enabling inference to be drawn from multiple
candidatemodels simultaneously. Thus,with each10-yearmovingwindow,
rangeland condition change was calculated at pixel level across Mongolian
rangelands. The derived time series of three weights represents the relative
likelihood of the condition change type, indicating the statistical beliefs in
decline, increase or stable rangeland status from the accumulated vegetation
condition changes during each previous decade.

Accuracy assessment
Field observations of rangeland conditions across Mongolia for validating
our results were collected from a nationwide rangeland survey program by
the National Agency for Meteorology and Environmental Monitoring
(NAMEM) in 2016, covering most of the vegetation types at 1040 mon-
itoring sites across the country. The NAMEM further converted the
observations to 5 different degradation levels by using an interpretation tool
named Ecological Site Descriptions. These degradation levels were carefully
established by comparing the vegetation health at each site against that of
healthy counterpartswithin the same specific vegetation communities. They
describe a sequence of changes from healthy rangeland conditions toward
unproductive states based on key criteria such as species composition, bare
soil cover, total species number, the proportion of palatable anddegradation

indicator species, litter accumulation, and above-ground biomass (details in
Table 3).

The accuracy assessment of this study was carried out using both
qualitative and quantitative methods based on field data. Qualitatively, we
examined the spatial coherence between field observations and changes in
rangeland conditions depicted in the map, alongside its concurrence with
local environmental andmanagement reports. Quantitatively, we employed
a confusion matrix to calculate Overall Accuracy (OA), Producer’s Accu-
racy (PA), User’s Accuracy (UA), and Balanced Accuracy (BA). In con-
structing the confusion matrix, we generated a dominant rangeland
condition change map from 1986 to 2016 using the maximum value rule
across beliefs in “Increase”, “Stable”, and “Decline”maps. To harmonize the
five degradation levels from field data with the three categories on our
rangeland changemap, we grouped them into two classifications: “Healthy”
and “Slightly degraded” levels fromfield observations, alongwith “Increase”
or “Stable” conditions fromourmap,were designated as the “Healthy” class;
conversely, “Moderately degraded”, “Heavily degraded”, and “Fully degra-
ded” levels from field data, matched with the “Decline” condition from our
map, were classified as the “Degradation” class.

Separation of natural variability from rangeland management
impacts
Changes in rangeland condition represented as a belief in the support of the
data for different models of change (i.e., decline, increase, and stable) were
output as time series over a 10-year moving window and over the whole
study period (1986–2020) for each pixel. These trajectories serve as a
foundation for exploring condition change in rangelands under differing
perspectives, including tracking historical trajectories and spatial patterns of
rangeland change in response to different landmanagement decisions.Here
we utilized the time series of belief in ‘increase’ to quantify the effectiveness
and spatial distribution of benefits associated with protected area policies
across Mongolia.

To ensure the difference observed pre- and post-management periods
from these belief trajectories represents a signature of the management and
not inter-annual climatic variability inherent in rangeland systems, it was
essential to remove the impact of this variability from the trajectories. Such a
need has been recognized in previous studies50,51. The most common
method, Residual Trends Analysis (RESTREND), compares expected plant
growth based on rainfall patterns with actual satellite observations to
remove the effects of climate variability. However, this method has been
proven unreliable when the change observed is greater than 20%46. Given
our study aims to be flexible to the level of change to be detected, to com-
plement targets, decision triggers, or reporting needs of many end users in
these vast rangeland systems, we had to explore another approach. We
instead utilized a method based on LCC to isolate the effects of human
management38,44.

To remove the rainfall variability from our belief calculation, we
developed a continental scale reference value for each LCC across Asia for
comparisonwith themanaged areas in this study, in this case, protected area
declaration and management. By subtracting the belief in an ‘increase’ in
condition after protection with the average for all corresponding reference
sites over the same time horizon, we effectively removed rainfall variability
and allowed change to be more likely a signature of management imple-
mented. The difference in the belief of an increase in protected areas was
mapped to show the spatial distribution of the management impact, as well

Table 3 | The basic criteria followed to classify the field observations of rangeland conditions to 5 degradation levels

Degradation levels Criteria

Healthy All native dominants are in place.

Slightly degraded Key dominants are still dominating, some grazing-sensitive forbs are in decline and grazing-resistant species are in increase.

Moderately degraded Dominants are in decline and replaced by other subdominants, number of species drops down.

Heavily degraded Remnants of key species are thinning, and the abundance of degradation indicator species increases.

Fully degraded Total vegetation cover is reduced or dominated by very few degradation indicator species.
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as maps of belief when climate variability is not removed (Figs. 4 and 5).
Additionally, land cover changes, such as transitions from rangeland to
other land types or vice versa, were identified and excluded from the
management assessment analysis. This step was taken to prevent any mis-
attribution of changes in rangeland conditions.

Data availability
All the datasets used in this study are freely and globally available on either
Google Earth Engine Data Catalog (https://developers.google.com/earth-
engine/datasets/) or their official websites.

Code availability
GoogleEarthEngine code thatwas used for data analysis andmapdisplay in
this study can be accessed via Zenodo https://doi.org/10.5281/zenodo.
10806820.

Received: 27 November 2023; Accepted: 18 June 2024;

References
1. Reeves, M. C. et al. Global view of remote sensing of rangelands:

evolution, applications, future pathways. In Land Resources
Monitoring, Modeling, and Mapping with Remote Sensing, Remote
Sensing Handbook (CRC Press, 2015).

2. Godde, C. M., Garnett, T., Thornton, P. K., Ash, A. J. & Herrero, M.
Grazing systems expansion and intensification: drivers, dynamics,
and trade-offs. Glob. Food Secur. 16, 93–105 (2017).

3. Fargher, J., Howard, B., Burnside, D. & Andrew, M. The economy of
Australian rangelands—myth or mystery? Rangel. J. 25, 140–156
(2003).

4. Montanarella, L., Scholes, R. & Brainich, A. The Assessment Report
on Land Degradation and Restoration (IPBES secretariat, Bonn,
Germany, 2018).

5. IUCN. The IUCN Red List of Threatened Species. Version 2020-2
https://www.iucnredlist.org (2020).

6. Kimiti, D.W., Hodge, A.-M. C., Herrick, J. E., Beh, A.W. & Abbott, L. E.
Rehabilitation of community-owned, mixed-use rangelands: lessons
from the Ewaso ecosystem in Kenya. Plant Ecol. 218, 23–37 (2017).

7. Dror, D. K. & Allen, L. H. The importance of milk and other animal-
source foods for children in low-incomecountries.FoodNutr. Bull.32,
227–243 (2011).

8. Jones, M. O. et al. Innovation in rangeland monitoring: annual, 30 m,
plant functional type percent cover maps for U.S. rangelands,
1984–2017. Ecosphere 9, e02430 (2018).

9. Hill,M. J. &Guerschman, J. P. TheMODISglobal vegetation fractional
cover product 2001–2018: characteristics of vegetation fractional
cover in grasslands and Savanna woodlands. Remote Sens. https://
doi.org/10.3390/rs12030406 (2020).

10. Godde, C. M. et al. Global rangeland production systems and
livelihoods at threat under climate change and variability. Environ.
Res. Lett. https://doi.org/10.1088/1748-9326/ab7395 (2020).

11. Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K. & Herrero, M.
Climate change impacts on selected global rangeland ecosystem
services. Glob. Chang. Biol. 24, 1382–1393 (2018).

12. Hansen, M. C. et al. High-resolution global maps of 21st-century
forest cover change. science 342, 850–853 (2013).

13. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution
mapping of global surface water and its long-term changes. Nature
540, 418–422 (2016).

14. Zhang, M. et al. GCI30: a global dataset of 30 m cropping intensity
using multisource remote sensing imagery. Earth Syst. Sci. Data 13,
4799–4817 (2021).

15. Leisher, C., Hess, S., Boucher, T. M., Beukering, P. & Sanjayan, M.
Measuring the impacts of community-based grasslands
management in Mongolia’s Gobi. PLoS ONE 7, e30991 (2012).

16. Batkhuyag, B. et al. Sixth National Report to the Convention on
Biological Diversity (2015-2018) 1–168 (Ministry of Environment and
Tourism of Mongolia, Ulaanbaatar, 2019).

17. Batjargal, Z. & Shiirevdamba, T. Expanding the Protected Area
Network in Mongolia: A Review and Assessment Report (TNC
Mongolia, 2017).

18. Stolton, S. & Dudley, N.METT Handbook: A Guide to Using the
Management Effectiveness Tracking Tool (METT) (WWF-UK,
Woking, 2016).

19. Dudley, N. et al. Tracking Progress in Managing Protected Areas
Around the World (WWF International, Gland, 2007).

20. Namsrai, O. et al. Evaluating the management effectiveness of
protected areas in Mongolia using the management effectiveness
tracking tool. Environ. Manag. 63, 249–259 (2019).

21. Halsey, L. G., Curran-Everett, D., Vowler, S. L. &Drummond,G. B. The
fickle P value generates irreproducible results. Nat. Methods 12,
179–185 (2015).

22. Ahlborn, J. et al. Climate–grazing interactions in Mongolian
rangelands: effects of grazing change along a large-scale
environmental gradient. J. Arid Environ. 173, 104043 (2020).

23. Jamsranjav, C. et al. Applying a dryland degradation framework for
rangelands: the case of Mongolia. Ecol. Appl. 28, 622–642 (2018).

24. Reading, R. P., Wingard, G., Selenge, T. & Amgalanbaatar, S.
Protecting the Wild 257-265 (Springer, 2015).

25. Flood, N. Seasonal composite Landsat TM/ETM+ images using the
medoid (a multi-dimensional median). Remote Sens. 5, 6481–6500
(2013).

26. Goodwin, N. R., Collett, L. J., Denham, R. J., Flood, N. & Tindall, D.
Cloud and cloud shadow screening across Queensland, Australia: an
automated method for Landsat TM/ETM+ time series. Remote Sens.
Environ. 134, 50–65 (2013).

27. Xie, Z. et al. Seasonal dynamics of fallow and cropping lands in the
broadacre cropping region of Australia. Remote Sens. Environ. 305,
114070 (2024).

28. Gonzalez-Roglich, M. et al. Synergizing global tools to monitor
progress towards land degradation neutrality: trends.Earth and the
world overview of conservation approaches and technologies
sustainable land management database. Environ. Sci. Policy 93,
34–42 (2019).

29. Noojipady, P., Prince, S. D. & Rishmawi, K. Reductions in productivity
due to land degradation in the drylands of the southwestern United
States. Ecosyst. Health Sustain. 1, 1–15 (2015).

30. Huete, A. et al. Overview of the radiometric and biophysical
performanceof theMODISvegetation indices.RemoteSens. Environ.
83, 195–213 (2002).

31. Ma, X. et al. Sun-angle effects on remote-sensing phenology
observed and modelled using himawari-8. Remote Sens. 12, 1339
(2020).

32. Li, Z. et al. Comparison and transferability of thermal, temporal and
phenological-based in-season predictions of above-ground biomass
in wheat crops from proximal crop reflectance data. Remote Sens.
Environ. https://doi.org/10.1016/j.rse.2022.112967 (2022).

33. Otgonbayar, M., Atzberger, C., Chambers, J. & Damdinsuren, A.
Mapping pasture biomass in Mongolia using partial least squares,
random forest regression andLandsat 8 imagery. Int. J. RemoteSens.
40, 3204–3226 (2019).

34. Matongera, T. N., Mutanga, O., Sibanda, M. & Odindi, J. Estimating
and monitoring land surface phenology in rangelands: a review of
progress and challenges. Remote Sens. 13, 2060 (2021).

35. Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-
band enhanced vegetation index without a blue band. Remote Sens.
Environ. 112, 3833–3845 (2008).

36. Funk, C. et al. The climate hazards infrared precipitation with stations
—a new environmental record for monitoring extremes. Sci. Data 2,
1–21 (2015).

https://doi.org/10.1038/s43247-024-01516-2 Article

Communications Earth & Environment |           (2024) 5:349 10

https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://doi.org/10.5281/zenodo.10806820
https://doi.org/10.5281/zenodo.10806820
https://www.iucnredlist.org
https://www.iucnredlist.org
https://doi.org/10.3390/rs12030406
https://doi.org/10.3390/rs12030406
https://doi.org/10.3390/rs12030406
https://doi.org/10.1088/1748-9326/ab7395
https://doi.org/10.1088/1748-9326/ab7395
https://doi.org/10.1016/j.rse.2022.112967
https://doi.org/10.1016/j.rse.2022.112967


37. Jia, M. et al. Nighttime light in China’s coastal zone: the type
classification approach using SDGSAT-1 Glimmer Imager. Remote
Sens. Environ. 305, 114104 (2024).

38. Wessels, K., Prince, S. & Reshef, I. Mapping land degradation by
comparison of vegetation production to spatially derived estimates of
potential production. J. Arid Environ. 72, 1940–1949 (2008).

39. ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep.
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-
PUGv2_2.0.pdf (2017).

40. Hengl, T. et al. SoilGrids250m: global gridded soil information based
on machine learning. PLoS ONE 12, e0169748 (2017).

41. Karagulle, D. et al. Modeling global Hammond landform regions from
250‐m elevation data. Trans. GIS 21, 1040–1060 (2017).

42. Beck, H. E. et al. Present and future Koppen-Geiger climate
classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

43. Gibbs, H. & Salmon, J. Mapping the world’s degraded lands. Appl.
Geogr. 57, 12–21 (2015).

44. Prince,S., Becker-Reshef, I. &Rishmawi,K.Detectionandmappingof
long-term land degradation using local net production scaling:
application to Zimbabwe. Remote Sens. Environ. 113,
1046–1057 (2009).

45. An, R. et al.Monitoring rangelanddegradation using a novel local NPP
scaling based scheme over the “Three-River Headwaters” region,
hinterland of the Qinghai-Tibetan Plateau. Quat. Int. 444,
97–114 (2017).

46. Wessels, K. J., Van Den Bergh, F. & Scholes, R. Limits to detectability
of land degradation by trend analysis of vegetation index data.
Remote Sens. Environ. 125, 10–22 (2012).

47. Wessels, K. J., Prince, S. D., Carroll, M. & Malherbe, J. Relevance of
rangeland degradation in semiarid northeastern South Africa to the
nonequilibrium theory. Ecol. Appl. 17, 815–827 (2007).

48. Johnson, J. B. & Omland, K. S. Model selection in ecology and
evolution. Trends Ecol. Evol. 19, 101–108 (2004).

49. Akaike, H. Selected Papers of Hirotugu Akaike 199–213
(Springer, 1998).

50. Evans, J. & Geerken, R. Discrimination between climate and human-
induced dryland degradation. J. Arid Environ. 57, 535–554 (2004).

51. Wessels, K. J., Prince, S., Frost, P. & Van Zyl, D. Assessing the effects
of human-induced land degradation in the former homelands of
northern South Africa with a 1 km AVHRR NDVI time-series. Remote
Sens. Environ. 91, 47–67 (2004).

Acknowledgements
This work was supported by the Australian Research Council Discovery
Project (ARC-DP170101480), the Natural Science Foundation of China
(42371311), and the Royal Society International Exchanges Cost Share
(NSFC 223287). E.M.M. was supported by an ARC Future Fellowship and
M.P.A. was funded by an Australian Research Council Discovery Early
Career Researcher Award (DE200100683). We thank Adam Charette-

Castonguay for providing suggestions on some of the datasets used in
this study.

Author contributions
E.M.M., E.T.G., S.R.P., andZ.X. conceived the initial idea. Z.X.performed the
analysisandwrote themanuscriptwith thesupport ofE.M.M., E.T.G., S.R.P.,
D.J.P., R.J.H., and J.Y., M.P.A. helped with the statistical modeling and
associated coding. Y.B., G.P., and B.B. provided Mongolian rangeland
management data and suggestions on management assessment. All
authors contributed to the writing and revisions of the manuscript on their
specific expertise.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-024-01516-2.

Correspondence and requests for materials should be addressed to
Zunyi Xie.

Peer review information Communications Earth & Environment thanks
Richard Kingsford and Jian Sun for their contribution to the peer review of
this work. Primary Handling Editors: Huai Chen, Joe Aslin and Aliénor
Lavergne. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s43247-024-01516-2 Article

Communications Earth & Environment |           (2024) 5:349 11

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
https://doi.org/10.1038/s43247-024-01516-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A scalable big data approach for remotely tracking rangeland conditions
	Results
	Initial status of rangeland condition
	Trajectories of rangeland condition change
	Management impacts
	Comparison among different management strategies

	Discussion
	Conclusions
	Methods
	Study area
	Landsat data and vegetation index selection
	Management data
	Precipitation
	Biogeophysical data and land capability classification
	Initial rangeland condition identification
	Rangeland condition change modeling
	Accuracy assessment
	Separation of natural variability from rangeland management impacts

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




