1,028 research outputs found

    Southwest Pacific Ocean Circulation and Climate Experiment (SPICE): Part II. Implementation Plan

    Get PDF

    Molecular Devices. Chiral, Bichromophoric Silicones

    Get PDF
    The interaction of chromophores is proposed as a basis for the construction of devices with high complexity. Silicones are promising elements of structure to control the function of such devices

    Calibration des données oxygène-CTD pendant la campagne Frontalis-3 aux mois d'avril-mai 2005

    Get PDF

    Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1999A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used to combine consistently the transoceanic sections. The circulation is geostrophic with an Ekman layer at the surface and oceanic layers defined by neutral surfaces. Near-conservation of mass, salt and top-to-bottom silica is required and, in addition, heat and the phosphate-oxygen combination (170[P04]+[02]) are conserved in layers that are not in contact with the surface. A globally-consistent solution is obtained for a depth-independent adjustment to the thermal wind field, freshwater flux divergenees, the Ekman transport, and the advective and diffusive dianeutral fluxes between layers. A detailed error budget permits calculation of statistical uncertainties, taking into account both the non-resolved part of the solution and the systematic errors due to the temporal oceanic variability. The estimated water mass transports during the WOCE period (1985-1996) are generally similar to previous published estimates. However, important differences are found. In particular, the inflow of bottom waters into the Pacific Ocean is smaller than in most previous estimates. Utilization of property anomaly conservation constraints allows the estimation of significant dianeutral diffusivities in deep layers, with a global average of 3 ± lcm2s- 1 north of 30°S. Dianeutral transfers indicate that about 20 Sv of bottom water is formed in the Southern Ocean. Significant ocean-atmosphere heat fluxes are found, with a global heating of 2.3 ± 0.4PW in the tropical band and a corresponding cooling at high latitudes. The signature of a large-scale average export production is found for nutrients in several temperate regions. Despite the large uncertainties, the production magnitudes are consistent with independent measurements from sediment traps and isotopic data. Net nutrient sources or sinks are found in several regions, suggesting either transport of dissolved organic matter or a seasonal alias. Oxygen indicates large exchanges with the atmosphere, with intake at high latitudes and outgassing/remineralization at low latitudes.This work was supported in part by the Jet Propulsion Laboratory/CALTECH (contract #958125), and by gifts from Ford, General Motors, and Daimler-Chrysler to MIT's Climate Modelling Initiative

    Secondary Electron Emission from Solids. II. Theoretical Descriptions

    Get PDF
    A primary beam impinging on a solid target suffers elastic and inelastic collisions with the components of the solid. These collisions can be incorporated into a Monte-Carlo simulation model if all the cross sections associated with the various types of collisions are known. Elastic diffusion effects are mainly related to the interactions of the particles with the real potential V(r) surrounding each ionic core. An essential simplification of the inelastic interactions is to consider that the solid reacts as a whole to an external probe, which is the incident electron beam. The linear response of the solid to an external perturbation is described by its dielectric function. In the present paper, the methods used to evaluate the elastic and inelastic cross-sections and to simulate the secondary electron emission are reviewed and discussed

    Secondary Electron Emission from Solids. I. Secondary Electron Spectroscopy

    Get PDF
    The secondary electron emission spectroscopy can provide useful information about the transitions in the electronic structure from solids and deals with the detection of fine structures superimposed on the true secondary peak, in the kinetic energy range of the true secondary electrons. Several mechanisms have been proposed for the creation of these fine structures: diffraction phenomena, plasmon decay, interband transitions to unoccupied levels, Auger transitions and more recently, autoionization emission. Some features could not be explained as being due to any bulk effect and were considered as indicative of a need to include surface wave-matching arguments in the analysis of secondary electron emission spectra. The authors give a review of the recent literature on the topic, including their own experience on the subject

    TPOS2020 : Tropical Pacific Observing System for 2020

    Get PDF
    This paper presents the new international TPOS2020 project: why it has been established, what are its scientific objectives, its proposed organization, governance, and what the expected outcomes are. It is aiming at informing Coriolis, Mercator Océan, and the operational oceanography communities, all concerned, and involved in generating interest and contributions to the project. Building upon its scientific activities in the Pacific and the surrounding countries, the French community is willing to take an active role in this international project. The TPOS 2020 Project is a focused, finite term project, which began in 2014 and will be completed in 2020. It will evaluate, and where necessary provide guidance, to change all elements that contribute to the Tropical Pacific Observing System (TPOS) based on a modern understanding of tropical Pacific science. Learning lessons from the great success-and finally partial collapse- of the TAO/TRITON array, the project objective is to build a renewed, integrated, internationally-coordinated and sustainable observing system in the Tropical Pacific, meeting both the needs of climate research and operational forecasting systems. The scientific objectives are: - To redesign and refine the TPOS to observe El Niño Southern Oscillation (ENSO) and advance scientific understanding of its causes, - To determine the most efficient and effective observational solutions to support prediction systems for ocean, weather and climate services, - To advance understanding of tropical Pacific physical and biogeochemical variability and predictability. TPOS2020 is coordinated by a steering committee with task teams and working groups working on specific aspects of the observing system. Since much of the use and benefit of TPOS data will be achieved through model assimilation and syntheses, the operational modeling centers are considered key partners. The TPOS2020 project also opens partnerships with other global ocean observing communities: the meteorological community, and the coastal and regional ocean communities. TPOS 2020 embraces the integration of complementary sampling technologies; it will consider the different observing system components as an integrated whole, targeting robustness and sustainability, along with a developed governance and coordination
    corecore