10,041 research outputs found

    Morphological evolution of a 3D CME cloud reconstructed from three viewpoints

    Full text link
    The propagation properties of coronal mass ejections (CMEs) are crucial to predict its geomagnetic effect. A newly developed three dimensional (3D) mask fitting reconstruction method using coronagraph images from three viewpoints has been described and applied to the CME ejected on August 7, 2010. The CME's 3D localisation, real shape and morphological evolution are presented. Due to its interaction with the ambient solar wind, the morphology of this CME changed significantly in the early phase of evolution. Two hours after its initiation, it was expanding almost self-similarly. CME's 3D localisation is quite helpful to link remote sensing observations to in situ measurements. The investigated CME was propagating to Venus with its flank just touching STEREO B. Its corresponding ICME in the interplanetary space shows a possible signature of a magnetic cloud with a preceding shock in VEX observations, while from STEREO B only a shock is observed. We have calculated three principle axes for the reconstructed 3D CME cloud. The orientation of the major axis is in general consistent with the orientation of a filament (polarity inversion line) observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis from VEX indicates a radial-directed axis orientation. It might be that locally only the leg of the flux rope passed through VEX. The height and speed profiles from the Sun to Venus are obtained. We find that the CME speed possibly had been adjusted to the speed of the ambient solar wind flow after leaving COR2 field of view and before arriving Venus. A southward deflection of the CME from the source region is found from the trajectory of the CME geometric center. We attribute it to the influence of the coronal hole where the fast solar wind emanated from.Comment: ApJ, accepte

    Theory for Gossamer and Resonating Valence Bond Superconductivity

    Get PDF
    We use an effective Hamiltonian for two-dimensional Hubbard model including an antiferromagnetic spin-spin coupling term to study recently proposed gossamer superconductivity. We formulate a renormalized mean field theory to approximately take into account the strong correlation effect in the partially projected Gutzwiller wavefucntions. At the half filled, there is a first order phase transition to separate a Mott insulator at large Coulomb repulsion U from a gossamer superconductor at small U. Away from the half filled,the Mott insulator is evolved into an resonating valence bond state, which is adiabatically connected to the gossamer superconductor.Comment: 10 pages, 13 figure

    Non-Fermi Liquid Behavior In Quantum Critical Systems

    Full text link
    The problem of an electron gas interacting via exchanging transverse gauge bosons is studied using the renormalization group method. The long wavelength behavior of the gauge field is shown to be in the Gaussian universality class with a dynamical exponent z=3z=3 in dimensions D≥2D \geq 2. This implies that the gauge coupling constant is exactly marginal. Scattering of the electrons by the gauge mode leads to non-Fermi liquid behavior in D≤3D \leq 3. The asymptotic electron and gauge Green's functions, interaction vertex, specific heat and resistivity are presented.Comment: 9 pages in REVTEX 2.0. Submitted to Phys. Rev. Lett. 3 figures in postscript files can be obtained at [email protected]. The filename is gan.figures.tar.z and it's compressed. You can uncompress it by using commands: "uncompress gan.figures.tar.z" and "tar xvf gan.figures.tar

    Top quark pair production via polarized and unpolarized photons in Supersymmetric QCD

    Get PDF
    QCD corrections to top quark pair production via fusion of both polarized and unpolarized photons are calculated in Supersymmetric Model. The corrections are found to be sizable. The dependence of the corrections on the masses of the supersymmetric particles is also investigated. Furthermore, we studied CP asymmetry effects arising from the complex couplings in the MSSM. The CP violating parameter can reach 10−210^{-2} for favorable parameter values.Comment: 26 pages, LaTex, including 12 figures in 12 eps files. submitted to Phys. Rev.

    Gossamer Superconductivity near Antiferromagnetic Mott Insulator in Layered Organic Conductors

    Get PDF
    Layered organic superconductors are on the verge of the Mott insulator. We use Gutzwiller variational method to study a Hubbard model including a spin exchange coupling term. The ground state is found to be a Gossamer superconductor at small on-site Coulomb repulsion U and an antiferromagnetic Mott insulator at large U, separated by a first order phase transition. Our theory is qualitatively consistent with major experiments reported in organic superconductors.Comment: 5 pages, 3 figure

    Anything You Can Do, You Can Do Better: Neural Substrates of Incentive-Based Performance Enhancement

    Get PDF
    Performance-based pay schemes in many organizations share the fundamental assumption that the performance level for a given task will increase as a function of the amount of incentive provided. Consistent with this notion, psychological studies have demonstrated that expectations of reward can improve performance on a plethora of different cognitive and physical tasks, ranging from problem solving to the voluntary regulation of heart rate. However, much less is understood about the neural mechanisms of incentivized performance enhancement. In particular, it is still an open question how brain areas that encode expectations about reward are able to translate incentives into improved performance across fundamentally different cognitive and physical task requirements

    On the low energy properies of fermions with singular interactions

    Full text link
    We calculate the fermion Green function and particle-hole susceptibilities for a degenerate two-dimensional fermion system with a singular gauge interaction. We show that this is a strong coupling problem, with no small parameter other than the fermion spin degeneracy, N. We consider two interactions, one arising in the context of the t−Jt-J model and the other in the theory of half-filled Landau level. For the fermion self energy we show in contrast to previous claims that the qualitative behavior found in the leading order of perturbation theory is preserved to all orders in the interaction. The susceptibility χQ\chi_Q at a general wavevector Q≠2pF\bf{Q} \neq 2\bf{p_F} retains the fermi-liquid form. However the 2pF2p_F susceptibility χ2pF\chi_{2p_F} either diverges as T−>0T -> 0 or remains finite but with nonanalytic wavevector, frequency and temperature dependence. We express our results in the language of recently discussed scaling theories, give the fixed-point action, and show that at this fixed point the fermion-gauge-field interaction is marginal in d=2d=2, but irrelevant at low energies in d≥2d \ge 2.Comment: 21 pages, uuencoded LATEX file with included Postscript figures, R

    Single chargino production via gluon-gluon fusion in a supersymmetric theory with an explicit R-parity violation

    Get PDF
    We studied the production of single charginoχ~1±\tilde{\chi}_1^{\pm} accompanied by μ∓\mu^{\mp} lepton via gluon-gluon fusion at the LHC. The numerical analysis of their production rates is carried out in the mSUGRA scenario with some typical parameter sets. The results show that the cross sections of the χ~1±μ∓\tilde{\chi}_1^{\pm}\mu^{\mp} productions via gluon-gluon collision are in the order of 1∼1021 \sim 10^{2} femto barn quantitatively at the CERN LHC, and can be competitive with production mechanism via quark-antiquark annihilation process.Comment: LaTex file, 18 pages, 4 EPS file
    • …
    corecore