4,689 research outputs found

    User Selection in Reconfigurable Intelligent Surface Assisted Communication Systems

    Get PDF
    This paper presents a detailed investigation on the performance of reconfigurable intelligent surface (RIS)-assisted communication system with user scheduling. Depending on the availability of channel state information (CSI) at the RIS, two separate scenarios are considered, namely without CSI and with CSI. Closed-form expressions are derived for the ergodic capacity of the system in both scenarios. It is found that CSI has a significant impact on the performance of the system. Without CSI, the RIS provides an array gain of N, where N is the number of reflecting elements, and user scheduling provides an multi-user gain of log logM, where M is the number of users. With CSI, the RIS provides an array gain of N2, while no multi-user diversity gain can be obtained

    Full-Duplex MIMO Relaying Powered by Wireless Energy Transfer

    Full text link
    We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipped with two sets of antennas to enable full-duplex communications. Three different interference mitigation schemes are studied, namely, 1) optimal 2) zero-forcing and 3) maximum ratio combining/maximum ratio transmission. We develop new outage probability expressions to investigate delay-constrained transmission throughput of these schemes. Our analysis show interesting performance comparisons of the considered precoding schemes for different system and link parameters.Comment: Accepted for IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2015), Invited pape

    Optimization and Analysis of Wireless Powered Multi-antenna Cooperative Systems

    Get PDF
    In this paper, we consider a three-node cooperative wireless powered communication system consisting of a multi-antenna hybrid access point (H-AP) and a single-antenna relay and a single-antenna user. The energy constrained relay and user first harvest energy in the downlink and then the relay assists the user using the harvested power for information transmission in the uplink. The optimal energy beamforming vector and the time split between harvest and cooperation are investigated. To reduce the computational complexity, suboptimal designs are also studied, where closed-form expressions are derived for the energy beamforming vector and the time split. For comparison purposes, we also present a detailed performance analysis in terms of the achievable outage probability and the average throughput of an intuitive energy beamforming scheme, where the H-AP directs all the energy towards the user. The findings of the paper suggest that implementing multiple antennas at the H-AP can significantly improve the system performance, and the closed-form suboptimal energy beamforming vector and time split yields near optimal performance. Also, for the intuitive beamforming scheme, a diversity order of (N+1)/2 can be achieved, where N is the number of antennas at the H-AP

    Perception Driven Texture Generation

    Full text link
    This paper investigates a novel task of generating texture images from perceptual descriptions. Previous work on texture generation focused on either synthesis from examples or generation from procedural models. Generating textures from perceptual attributes have not been well studied yet. Meanwhile, perceptual attributes, such as directionality, regularity and roughness are important factors for human observers to describe a texture. In this paper, we propose a joint deep network model that combines adversarial training and perceptual feature regression for texture generation, while only random noise and user-defined perceptual attributes are required as input. In this model, a preliminary trained convolutional neural network is essentially integrated with the adversarial framework, which can drive the generated textures to possess given perceptual attributes. An important aspect of the proposed model is that, if we change one of the input perceptual features, the corresponding appearance of the generated textures will also be changed. We design several experiments to validate the effectiveness of the proposed method. The results show that the proposed method can produce high quality texture images with desired perceptual properties.Comment: 7 pages, 4 figures, icme201

    Um cenário de aprendizagem com robots para desenvolver competência estatística

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Evolution of particle size distribution in air in the rainfall process via the moment method

    Get PDF
    Population balance equation is converted to three moment equations to describe the dynamical behavior of particle size distribution in air in the rainfall. The scavenging coefficient is expressed as a polynomial function of the particle diameter, the raindrop diameter and the raindrop velocity. The evolutions of particle size distribution are simulated numerically and the effects of the raindrop size distribution on particle size distribution are studied. The results show that the raindrops with smaller geometric mean diameter and geometric standard deviation of size remove particles much more efficiently. The particles which fall in the “greenfield gap” are the most difficult to be scavenged from the air

    Reactive market power analysis using must-run indices

    Get PDF
    This paper investigates the issues of reactive power must-run capacity in power system operations, hence in electricity markets. A must-run index-based method is proposed in the paper to measure the market power held by reactive power suppliers. The Nordic 32-bus system and the IEEE 118-bus system are used to test the proposed method. The market power holders of reactive power found using the proposed method are in accord with that found in the realistic Nordic system operation and in the existing analysis of IEEE 118-bus system. The paper identifies through must-run indices possible conditions that could lead to market power in the case of applying a bid structure within a market framework. Furthermore, market structure drawbacks can cause the appearance of market power even in a topologically ideal system. © 2008 IEEE.published_or_final_versio

    Throughput Analysis and Optimization of Wireless-Powered Multiple Antenna Full-Duplex Relay Systems

    Get PDF
    We consider a full-duplex (FD) decode-and-forward system in which the time-switching protocol is employed by the multi-antenna relay to receive energy from the source and transmit information to the destination. The instantaneous throughput is maximized by optimizing receive and transmit beamformers at the relay and the time-split parameter. We study both optimum and suboptimum schemes. The reformulated problem in the optimum scheme achieves closed-form solutions in terms of transmit beamformer for some scenarios. In other scenarios, the optimization problem is formulated as a semi-definite relaxation problem and a rank-one optimum solution is always guaranteed. In the suboptimum schemes, the beamformers are obtained using maximum ratio combining, zero-forcing, and maximum ratio transmission. When beamformers have closed-form solutions, the achievable instantaneous and delay-constrained throughput are analytically characterized. Our results reveal that, beamforming increases both the energy harvesting and loop interference suppression capabilities at the FD relay. Moreover, simulation results demonstrate that the choice of the linear processing scheme as well as the time-split plays a critical role in determining the FD gains.Comment: Accepted for publication in IEEE Transactions on Communication
    corecore