86 research outputs found
Impact of COVID-19 on Cross-cultural Learning from Malaysia-to-Japan Research Exchange
Outbound research exchange program to Japanese Higher Education Institutes is very popular among Malaysian researchers. During the exchange program, bilateral cultural learning occurs between researchers from Malaysia and Japan. Mutual cultural understanding accelerates the respect for foreign cultures and enables cultural diversity to flourish in the globalized world. However, the COVID-19 outbreak has shattered the traditional cultural learning paradigm. This study analyzes the cultural components of the Japanese exchange program disrupted by the pandemic. A survey with a Likert scale of 1 to 5 was conducted to investigate the disruption of continuous cultural learning in terms of lifestyle, language, social value, and trends experienced by Malaysian researchers after the pandemic. The results show that the Japanese social values are influencing Malaysian researchers and the disruption caused by the pandemic is significant
Knee cartilage segmentation using multi purpose interactive approach
Interactive model incorporates expert interpretation and automated segmentation. However, cartilage has complicated structure, indistinctive tissue contrast in magnetic resonance image of knee hardens image review and existing interactive methods are sensitive to various technical problems such as bi-label segmentation problem, shortcut problem and sensitive to image noise. Moreover, redundancy issue caused by non-cartilage labelling has never been tackled. Therefore, Bi-Bezier Curve Contrast Enhancement is developed to improve visual quality of magnetic resonance image by considering brightness preservation and contrast enhancement control. Then, Multipurpose Interactive Tool is developed to handle users’ interaction through Label Insertion Point approach. Approximate NonCartilage Labelling system is developed to generate computerized non-cartilage label, while preserves cartilage for expert labelling. Both computerized and interactive labels initialize Random Walks based segmentation model. To evaluate contrast enhancement techniques, Measure of Enhancement (EME), Absolute Mean Brightness Error (AMBE) and Feature Similarity Index (FSIM) are used. The results suggest that Bi-Bezier Curve Contrast Enhancement outperforms existing methods in terms of contrast enhancement control (EME = 41.44±1.06), brightness distortion (AMBE = 14.02±1.29) and image quality (FSIM = 0.92±0.02). Besides, implementation of Approximate Non-Cartilage Labelling model has demonstrated significant efficiency improvement in segmenting normal cartilage (61s±8s, P = 3.52 x 10-5) and diseased cartilage (56s±16s, P = 1.4 x 10-4). Finally, the proposed labelling model has high Dice values (Normal: 0.94±0.022, P = 1.03 x 10-9; Abnormal: 0.92±0.051, P = 4.94 x 10-6) and is found to be beneficial to interactive model (+0.12)
Acoustic Photometry of Biomedical Parameters for Association with Diabetes and Covid-19
Because of their mortality rate, diabetes and COVID-19 are serious diseases. Moreover, people with diabetes are at a higher risk of developing COVID-19 complications. This article therefore proposes a single, non-invasive system that can help people with diabetes and COVID-19 to monitor their health parameters by measuring oxygen saturation (SPO2), heart rate, and body temperature. This is in contrast to other pulse oximeters and previous work reported in the literature. A Max30102 sensor, consisting of two light-emitting diodes (LEDs), can serve as a transmission spectrum to enable three synchronous parameter measurements. Hence, the Max30102 sensor facilitates identification of the relationship between COVID-19 and diabetes in a cost-effective manner. Fifty subjects (20 healthy, 20 diabetic, and 10 with COVID-19), aged 18-61 years, were recruited to provide data on heart rate, body temperature, and oxygen saturation, measured in a variety of activities and scenarios. The results showed accuracy of ±97% for heart rate, ±98% for body temperature, and ±99% for oxygen saturation with an enhanced time efficiency of 5-7 seconds in contrast to a commercialized pulse oximeter, which took 10-12 seconds. The results were then compared with those of commercially available pulse oximetry (Oxitech Pulse Oximeter) and a thermometer (Medisana Infrared Thermometer). These results revealed that uncontrolled diabetes can be as dangerous as COVID-19 in terms of high resting heart rate and low oxygen saturation. Doi: 10.28991/esj-2022-SPER-04 Full Text: PD
Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment
BACKGROUND: The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. METHOD: In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. RESULT: From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. CONCLUSIONS: The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection
Study of 5.8 GHz Band-Stop Frequency Selective Surface (FSS)
This paper presents the study of 5.8 GHz frequency selective surface (FSS) acts as a band stop to eliminate unwanted radiation signal at 5.8GHz. The FSS was designed using computer simulation technology (CST) Microwave Studio software. The paper shows the comparison of square loop, octagon loop and hexagon loop of Band stop FSS (BSFSS) performance at 5.8 GHz. Besides, the BSFSS design using four different type of dielectric substrate such as FR-4, TLY-5, Roger RT5870 and Roger RT5880 were compared. The results obviously show that the Rogers RY5880 has the attenuation -44.72 dB. The fabricated FSS were measured by using free space technique with two horn antennas connected to performance network analyzer (PNA). The measured and simulated results were compared. The results show that the square loop FSS structure have the better attenuation -26.76 dB (simulated) and -38.34 dB (measured) at 5.8 GHz
Crossing the Linguistic Causeway: Ethnonational Differences on Soundscape Attributes in Bahasa Melayu
Despite being neighbouring countries and sharing the language of Bahasa
Melayu (ISO 639-3:ZSM), cultural and language education policy differences
between Singapore and Malaysia led to differences in the translation of the
"annoying" perceived affective quality (PAQ) attribute from English (ISO
639-3:ENG) to ZSM. This study expands upon the translation of the PAQ
attributes from eng to ZSM in Stage 1 of the Soundscapes Attributes Translation
Project (SATP) initiative, and presents the findings of Stage 2 listening tests
that investigated ethnonational differences in the translated ZSM PAQ
attributes and explored their circumplexity. A cross-cultural listening test
was conducted with 100 ZSM speakers from Malaysia and Singapore using the
common SATP protocol. The analysis revealed that Malaysian participants from
non-native ethnicities (my:o) showed PAQ perceptions more similar to Singapore
(sg) participants than native ethnic Malays (MY:M) in Malaysia. Differences
between Singapore and Malaysian groups were primarily observed in stimuli
related to water features, reflecting cultural and geographical variations.
Besides variations in water source-dominant stimuli perception, disparities
between MY:M and SG could be mainly attributed to vibrant scores. The findings
also suggest that the adoption of region-specific translations, such as
membingitkan in Singapore and menjengkelkan in Malaysia, adequately addressed
differences in the annoying attribute, as significant differences were observed
in one or fewer stimuli across ethnonational groups The circumplexity analysis
indicated that the quasi-circumplex model better fit the data compared to the
assumed equal angle quasi-circumplex model in ISO/TS 12913-3, although
deviations were observed possibly due to respondents' unfamiliarity with the
United Kingdom-centric context of the stimulus dataset...Comment: Preprint submitted to Elsevier for revie
Biomechanical evaluation of pin placement of external fixator in treating tranverse tibia fracture: analysis on first and second cortex of cortical bone
Biomechanical perspective of external fixator is one of the greatest factor to consider in successfully treating bone fracture. This is due to the fact that mechanical behavior of the structure can be analyzed and optimized in order to avoid mechanical failure, increase bone fracture healing rate and prevent pre-term screw loosening. There are three significant factors that affect the stability of external fixator which are the placement of pin at the bone, configuration and components of external fixator. These factors lead to one question: what is the optimum pin placement in which exerts optimum stability? To date, literature on above mentioned factors is limited. Therefore, we conducted a study to evaluate the uniplanar-unilateral external fixator for two different pin placement techniques in treating transverse tibia fracture via finite element method. The study was started off with the development of transverse tibia fracture using Mimics software. Computed tomography (CT) data image was utilized to develop three dimensional tibia bone followed by crafting fracture on the bone. Meanwhile, the external fixator was developed using SolidWork software. Both tibia bone and external fixator were meshed in 3-matic software with triangular mesh element. Simulation of this configuration was took place in a finite element software, Marc.Mentat software. A load of 400 N was applied to the proximal tibia bone in order to simulate stance phase of a gait cycle. From the findings, the pin placement at the second cortex of bone provided optimum stability in terms of stress distribution and displacement, which should be considered for better treatment for transverse tibia fracture. On the other hand, the pin placement at first cortex should be avoided to prevent many complications
Biomechanical analysis of conventional and locking compression plate for treating fibula fracture: A finite element study
Background: Due to questionable effectiveness of malleolar fracture fixation, biomechanical study was conducted to compare the stability of One Third Tubular (OTT) Plate and Locking Compression Plate (LCP); 2) Methods: CT image of bone was used to develop 3D bone model while the plate was constructed in Solidwork with varied number of screws. Further, finite element study was conducted for both models where the bone and plate were defined as homogenous and isotropic material properties; 3) Results: For LCP, the highest VMS observed at the plate for 3 screws was 484 MPa, whereas for 5 screws plate was 667 MPa. Meanwhile, for OTT, the highest VMS at plate was observed for 3 screws was 300.5 MPa, whereas for 5 screw plate was 127.5 MPa. 4) Conclusion: Based on the results, it can be noted that the usage of 3 screw causing a lower VMS at plate compared to 5 screws. However, the relation is only valid for LCP. On the other hand, for OTT, 5-screw constructs giving a low VMS than 3-screw constructs. It can be concluded that the optimum stabilities of OTT and LCP were found at 5 screws and 3 screws, respectively
A VGG16 feature-based transfer learning evaluation for the diagnosis of Oral Squamous Cell Carcinoma (OSCC)
Oral Squamous Cell Carcinoma (OSCC) is the most prevalent type of oral cancer. Early detection of such cancer could increase a patient’s survival rate by 83%. This chapter shall explore the use of a feature-based transfer learning model, i.e., VGG16 coupled with different types of conventional machine learning models, viz. Support Vector Machine (SVM), Random Forest as well as k-Nearest Neighbour (kNN) as a means to identify OSCC. A total of 990 evenly distributed normal and OSCC histopathological images are split into the 60:20:20 ratio for training, testing and validation, respectively. A testing accuracy of 93% was recorded via the VGG16- RF pipeline from the study. Consequently, the proposed architecture is suitable to be deployed as artificial intelligence-driven computer-aided diagnostics and, in turn, facilitate clinicians for the identification of OSCC
Deep learning in Cancer Diagnostics: a feature-based transfer learning evaluation
This book highlights the use of state-of-the-art Deep learning (DL) techniques in cancer diagnosis. It includes the diagnosis of four types of common cancers, i.e., breast, lung, oral and skin. This book also discusses the use of DL methods in combination with imaging techniques to identify cancer correctly
- …