29 research outputs found

    Ion energy increase in laser-generated plasma expanding through axial magnetic field trap

    Get PDF
    Laser-generated plasma is obtained in high vacuum (10−7 mbar) by irradiation of metallic targets (Al, Cu, Ta) with laser beam with intensities of the order of 1010 W/cm2. An Nd:Yag laser operating at 1064 nm wavelength, 9 ns pulse width, and 500 mJ maximum pulse energy is used. Time of flight measurements of ion emission along the direction normal to the target surface were performed with an ion collector. Measurements with and without a 0.1 Tesla magnetic field, directed along the normal to the target surface, have been taken for different target-detector distances and for increasing laser pulse intensity. Results have demonstrated that the magnetic field configuration creates an electron trap in front of the target surface along the axial direction. Electric fields inside the trap induce ion acceleration; the presence of electron bundles not only focuses the ion beam but also increases its energy, mean charge state and current. The explanation of this phenomenon can be found in the electric field modification inside the non-equilibrium plasma because of an electron bunching that increases the number of electron-ion interactions. The magnetic field, in fact, modifies the electric field due to the charge separation between the clouds of fast electrons, many of which remain trapped in the magnetic hole, and slow ions, ejected from the ablated target; moreover it increases the number of electron-ion interactions producing higher charge states

    Experimental investigation of non-linear wave to plasma interaction in a quasi-flat magnetostatic field

    Get PDF
    A characterization of wave-to-plasma interaction in a quasi-flat magnetostatic field at 3.75 GHz has been carried out by using a small-wire movable RF antenna, connected to a spectrum analyzer. The coupling between electromagnetic and electrostatic waves leads to a characteristic spectral emission in low frequency range and around the pumping wave frequency. The most relevant results consist in the broadening of the pumping wave spectrum above critical RF power thresholds and in the generation of sidebands of the pumping frequency, with corresponding components in low frequency domain. The non-linearities are accompanied by the generation of overdense plasmas and intense fluxes of X-rays

    Borderline personality disorder and aggressive behavior: A study based on the DSM-5 alternative model

    Get PDF
    © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Introduction Unplanned reactive aggressive acts are a clinical feature of particular interest in patients with borderline personality disorder (BPD). The early identification of personality traits correlated to aggressive behavior is certainly desirable in BDP populations. This study analyzes a clinical sample of 122 adult outpatients with BPD referred to Adult Mental Health Services of the Department of Mental Health of Bologna, in Italy. Methods The study examines the relationship with personality facets of the DSM-5 alternative model for personality disorders (AMPD), Personality Inventory for DSM (PID-5), with respect to the four main components of aggression measured by the Aggression Questionnaire (AQ): hostility, anger, verbal and physical aggression. Using robust regression models, the relationships between PID-5 facets and domains and the aggression components under consideration were identified. Results Verbal and physical aggression in our sample of BPD outpatients is mainly associated to PID-5 antagonism domain. Physically aggressive behavior is also related to callousness facet. Conclusions The traits most consistently associated with aggression were the domain of Antagonism and the facet of Hostility. The study findings highlight the need for clinicians working with individuals with BPD to pay particular attention to traits of hostility, callousness, and hostility to understand aggression.Peer reviewe

    Expansion of tungsten ions emitted from laser-produced plasma in axial magnetic and electric fields

    Get PDF
    The experimental results of the investigations on the influence of external magnetic and electric fields on the characteristics of a tungsten ion stream emitted from a plasma produced by the Nd:glass laser (1 J, 1 ns) performed at IPPLM, Warsaw are presented. A negatively biased target up to −15 kV and a magnetic field up to 0.45 T were used in the experiment. A set of ion collectors and an electrostatic cylindrical ion energy analyzer located at small angles with respect to the laser beam axis and at large distances from the target were applied for ion measurements. The effect of an external magnetic field is essential to plasma expansion, but the effect of the retarding potential of the target is very weak in our experimental conditions. The aim of the studies was to prove the possibility of the optimization of ion beam parameters from laser-produced plasma for the particular application as a laser ion source coupled with the electron cyclotron resonance ion source for particle accelerators

    Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions

    Get PDF
    Laser-beam interaction with expanding plasma was investigated using the PALS high-power iodine-laser system. The interaction conditions are significantly changing with the laser focus spot position. The decisive role of the laser-beam self-focusing, participating in the production of ions with the highest charge states, was proved

    Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities

    Get PDF
    AbstractAngular distributions of currents and velocities (energies) of ions produced at various target irradiation angles and laser intensities ranged from 1010 W/cm2 to 1017 W/cm2 were analyzed. It was confirmed that for low laser intensities the ion current distributions are always peaked along the target normal. However, at laser intensities comparable to or higher than 1014 W/cm2, the preferred direction of ion emission strongly depends on the irradiation geometry (laser focus setting, the irradiation angle), and can be off the target normal. This is very likely caused by the non-linear interaction of the laser beam with produced plasma, in particular, by the action of ponderomotive forces and the laser beam self-focusing

    Factors influencing parameters of laser ion sources

    Get PDF
    Various applications demand various kinds of ions. Charge state, energy and the amount of laser produced ions depend, primary, on the wavelength, the energy, the pulse duration, and the focusing ability of the laser used. Angle of the target irradiation, angle of the ion extraction (recording), and mainly the focus setting may significantly influence especially the portion of ions with the highest charge states. The participation of non-linear processes on the generation of ions with extremely high parameters is demonstrated. The observed effects support the idea of a longitudinal structure of the self-focused laser beam with a space period of ∼200 µm

    ELIMED: MEDICAL APPLICATION AT ELI-BEAMLINES. STATUS OF THE COLLABORATION AND FIRST RESULTS

    Get PDF
    ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure) pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goal is to generate and apply high-brightness X-ray sources and accelerated charged particles. In particular, medical applications are treated by the ELIMED task force, which has been launched by collaboration between ELI and INFN researchers. ELIMED aims to demonstrate the clinical applicability of laser accelerated ions. In this article, the state of the ELIMED project and the first scientific results are reported. The design and realisation of a preliminary beam handling system and of an advanced spectrometer for diagnostics of high energy (multi-MeV) laser-accelerated ion beams will also be briefly presented
    corecore