258 research outputs found
Flux lattice melting in the high Tc superconductors
One of the important issues for technological application of the high temperature superconductors is their behavior in a magnetic field. A variety of experiments including electrical transport, mechanical oscillators, and magnetic decoration have suggested that these magnetic properties will make applications more difficult than originally anticipated. These experiments and their results are briefly discussed
Multiquantum well structure with an average electron mobility of 4.0×10^6 cm^2/V s
We report a modulation-doped multiquantum well structure which suppresses the usual ambient light effect associated with modulation doping. Ten GaAs quantum wells 300-Å wide are symmetrically modulation doped using Si δ doping at the center of 3600-Å-wide Al0.1Ga0.9As barriers. The low field mobility of each well is 4.0×10^6 cm/V s at a density of 6.4×10^10 cm^−2 measured at 0.3 K either in the dark, or during, or after, exposure to light. This mobility is an order of magnitude improvement over previous work on multiwells
High order analysis of the limit cycle of the van der Pol oscillator
We have applied the Lindstedt-Poincaré method to study the limit cycle of the van der Pol oscillator, obtaining the numerical coefficients of the series for the period and for the amplitude to order 859. Hermite-Padé approximants have been used to extract the location of the branch cut of the series with unprecedented accuracy (100 digits). Both series have then been resummed using an approach based on Padé approximants, where the exact asymptotic behaviors of the period and the amplitude are taken into account. Our results improve drastically all previous results obtained on this subject.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Boyd, John P.. University of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin
Superconductivity and spin-glass like behavior in system with Pd sheet sandwiched between graphene sheets
Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is
sandwiched between adjacent graphene sheets. DC magnetization and AC magnetic
susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG
undergoes a superconducting transition at ( K). The
superconductivity occurs in Pd sheets. The relaxation of (aging),
which is common to spin glass systems, is also observed below . The
relaxation rate shows a peak at a characteristic time , which is
longer than a wait time . The irreversibility between and
occurs well above . The susceptibility obeys a
Curie-Weiss behavior with a negative Curie-Weiss temperature ( K). The growth of antiferromagnetic order is limited by the
disordered nature of nanographites, forming spin glass-like behavior at low
temperatures in graphene sheets.Comment: 21 pages, 15 figures; submitted to J. Phys.: Condensed Matte
Three-body correlations and finite-size effects in the Moore--Read states on a sphere
Two- and three-body correlations in partially filled degenerate fermion
shells are studied numerically for various interactions between the particles.
Three distinct correlation regimes are defined, depending on the short-range
behavior of the pair pseudopotential. For pseudopotentials similar to those of
electrons in the first excited Landau level, correlations at half-filling have
a simple three-body form consisting of the maximum avoidance of the triplet
state with the smallest relative angular momentum R_3=3. In analogy to the
superharmonic criterion for Laughlin two-body correlations, their occurrence is
related to the form of the three-body pseudopotential at short range. The
spectra of a model three-body repulsion are calculated, and the zero-energy
Moore--Read ground state, its +-e/4-charged quasiparticles, and the
magnetoroton and pair-breaking bands are all identified. The quasiparticles are
correctly described by a composite fermion model appropriate for Halperin's
p-type pairing with Laughlin correlations between the pairs. However, the
Moore--Read ground state, and specially its excitations, have small overlaps
with the corresponding Coulomb eigenstates when calculated on a sphere. The
reason lies in surface curvature which affects the form of pair pseudopotential
for which the "R_3>3" three-body correlations occur. In finite systems, such
pseudopotential must be slightly superharmonic at short range (different from
Coulomb pseudopotential). However, the connection with the three-body
pseudopotential is less size-dependent, suggesting that the Moore--Read state
and its excitations are a more accurate description for experimental nu=5/2
states than could be expected from previous calculations.Comment: 12 pages, 12 figures, submitted to PR
Translational Correlations in the Vortex Array at the Surface of a Type-II Superconductor
We discuss the statistical mechanics of magnetic flux lines in a
finite-thickness slab of type-II superconductor. The long wavelength properties
of a flux-line liquid in a slab geometry are described by a hydrodynamic free
energy that incorporates the boundary conditions on the flux lines at the
sample's surface as a surface contribution to the free energy. Bulk and surface
weak disorder are modeled via Gaussian impurity potentials. This free energy is
used to evaluate the two-dimensional structure factor of the flux-line tips at
the sample surface. We find that surface interaction always dominates in
determining the decay of translational correlations in the asymptotic
long-wavelength limit. On the other hand, such large length scales have not
been probed by the decoration experiments. Our results indicate that the
translational correlations extracted from the analysis of the Bitter patterns
are indeed representative of behavior of flux lines in the bulk.Comment: 23 pages, 1 figure (not included), harvmac.tex macro needed (e-mail
requests to [email protected] SU-CM-92-01
Simulation Studies on the Stability of the Vortex-Glass Order
The stability of the three-dimensional vortex-glass order in random type-II
superconductors with point disorder is investigated by equilibrium Monte Carlo
simulations based on a lattice XY model with a uniform field threading the
system. It is found that the vortex-glass order, which stably exists in the
absence of screening, is destroyed by the screenng effect, corroborating the
previous finding based on the spatially isotropic gauge-glass model. Estimated
critical exponents, however, deviate considerably from the values reported for
the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J.
Phys. Soc. Jpn. Vol.69 No.1 (2000
Correlations in Two-Dimensional Vortex Liquids
We report on a high temperature perturbation expansion study of the
superfluid-density spatial correlation function of a Ginzburg-Landau-model
superconducting film in a magnetic field. We have derived a closed form which
expresses the contribution to the correlation function from each graph of the
perturbation theory in terms of the number of Euler paths around appropriate
subgraphs. We have enumerated all graphs appearing out to 10-th order in the
expansion and have evaluated their contributions to the correlation function.
Low temperature correlation functions, obtained using Pad\'{e} approximants,
are in good agreement with Monte Carlo simulation results and show that the
vortex-liquid becomes strongly correlated at temperatures well above the vortex
solidification temperature.Comment: 18 pages (RevTeX 3.0) and 4 figures, available upon request,
IUCM93-01
Temperature Dependence of the Flux Line Lattice Transition into Square Symmetry in Superconducting LuNiBC
We have investigated the temperature dependence of the H || c flux line
lattice structural phase transition from square to hexagonal symmetry, in the
tetragonal superconductor LuNi_2B_2C (T_c = 16.6 K). At temperatures below 10 K
the transition onset field, H_2(T), is only weakly temperature dependent. Above
10 K, H_2(T) rises sharply, bending away from the upper critical field. This
contradicts theoretical predictions of H_2(T) merging with the upper critical
field, and suggests that just below the H_c2(T)-curve the flux line lattice
might be hexagonal.Comment: 4 pages, 3 figure
Phonon Emission from a 2D Electron Gas: Evidence of Transition to the Hydrodynamic Regime
Using as a thermometer the temperature dependent magneto-transport of a
two-dimensional electron gas, we find that effective temperature scales with
current as , where in the {\it Shubnikov
de-Haas} regime, and in both the {\it integer and fractional}
quantum Hall effect. This implies the phonon energy emission rate changes from
the expected to . We explain this, as well as the
dramatic enhancement in phonon emission efficiency using a hydrodynamic model.Comment: 4 pages, 2 Postscript figures uuencoded with TeX file uses psfig
macro. Submitted to Phys. Rev. Let
- …