1,374 research outputs found
Noise Limited Computational Speed
In modern transistor based logic gates, the impact of noise on computation
has become increasingly relevant since the voltage scaling strategy, aimed at
decreasing the dissipated power, has increased the probability of error due to
the reduced switching threshold voltages. In this paper we discuss the role of
noise in a two state model that mimic the dynamics of standard logic gates and
show that the presence of the noise sets a fundamental limit to the computing
speed. An optimal idle time interval that minimizes the error probability, is
derived
Reset and switch protocols at Landauer limit in a graphene buckled ribbon
Heat produced during a reset operation is meant to show a fundamental bound
known as Landauer limit, while simple switch operations have an expected
minimum amount of produced heat equal to zero. However, in both cases,
present-day technology realizations dissipate far beyond these theoretical
limits. In this paper we present a study based on molecular dynamics
simulations, where reset and switch protocols are applied on a graphene buckled
ribbon, employed here as a nano electromechanical switch working at the
thermodynamic limit
Intrawell stochastic resonance versus interwell stochastic resonance in underdamped bistable systems
We show that, for periodically driven noisy underdamped bistable systems, an intrawell stochastic resonance can exist, together with the conventional interwell stochastic resonance, resulting in a double maximum in the power spectral amplitude at the forcing frequency as a function of the noise intensity. The locations of the maxima correspond to matchings of deterministic and stochastic time scales in the system. In this paper we present experimental evidence of these phenomena and a phemonological nonadiabatic description in terms of a noise-controlled nonlinear dynamic resonance
Using a mathematical model to evaluate the efficacy of TB control measures.
We evaluated the efficacy of recommended tuberculosis (TB) infection control measures by using a deterministic mathematical model for airborne contagion. We examined the percentage of purified protein derivative conversions under various exposure conditions, environmental controlstrategies, and respiratory protective devices. We conclude that environmental control cannot eliminate the risk for TB transmission during high-risk procedures; respiratory protective devices, and particularly high-efficiency particulate air masks, may provide nearly complete protection if used with air filtration or ultraviolet irradiation. Nevertheless, the efficiency of these control measures decreases as the infectivity of the source case increases. Therefore, administrative control measures (e.g., indentifying and isolating patients with infectious TB) are the most effective because they substantially reduce the rate of infection
Nonlinear sensors: an approach to the residence time detection strategy.
The monitoring of the residence time difference in bistable sensors has been recently proposed as a valid scheme for improving the detection capabilities of sensors as diverse as fluxgate magnetometers, ferroelectric sensors and mechanical sensors. In this paper we propose an approach to the residence time based detection strategy based on the measurement of the slope m of the sensor output integral. We demonstrate that such a method, far from degrading the detection performances can provide an easier way to realize fast and reliable sensors without the computationally demanding task related with the computation of the residence time difference. We introduce the receiver operating characteristic curve as a quantitative estimator for the comparison of the two methods and show that the detector performances increase with increasing the periodic bias amplitude A up to a maximum value. This condition has potentially relevant consequences in the future detectors design
Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions
Experimental, analytical, and numerical results suggest that the mechanism by
which a uniaxial single-domain ferromagnet switches after sudden field reversal
depends on the field magnitude and the system size. Here we report new results
on how these distinct decay mechanisms influence hysteresis in a
two-dimensional nearest-neighbor kinetic Ising model. We present theoretical
predictions supported by numerical simulations for the frequency dependence of
the probability distributions for the hysteresis-loop area and the
period-averaged magnetization, and for the residence-time distributions. The
latter suggest evidence of stochastic resonance for small systems in moderately
weak oscillating fields.Comment: Includes updated results for Fig.2 and minor text revisions to the
abstract and text for clarit
Stochastic resonance in bistable systems: The effect of simultaneous additive and multiplicative correlated noises
We analyze the effect of the simultaneous presence of correlated additive and
multiplicative noises on the stochastic resonance response of a modulated
bistable system. We find that when the correlation parameter is also modulated,
the system's response, measured through the output signal-to-noise ratio,
becomes largely independent of the additive noise intensity.Comment: RevTex, 10 pgs, 3 figure
- …