1,114 research outputs found

    Consistent discretizations: the Gowdy spacetimes

    Get PDF
    We apply the consistent discretization scheme to general relativity particularized to the Gowdy space-times. This is the first time the framework has been applied in detail in a non-linear generally-covariant gravitational situation with local degrees of freedom. We show that the scheme can be correctly used to numerically evolve the space-times. We show that the resulting numerical schemes are convergent and preserve approximately the constraints as expected.Comment: 10 pages, 8 figure

    Semi-classical limit and minimum decoherence in the Conditional Probability Interpretation of Quantum Mechanics

    Full text link
    The Conditional Probability Interpretation of Quantum Mechanics replaces the abstract notion of time used in standard Quantum Mechanics by the time that can be read off from a physical clock. The use of physical clocks leads to apparent non-unitary and decoherence. Here we show that a close approximation to standard Quantum Mechanics can be recovered from conditional Quantum Mechanics for semi-classical clocks, and we use these clocks to compute the minimum decoherence predicted by the Conditional Probability Interpretation.Comment: 8 pages, references adde

    Consistent discretization and loop quantum geometry

    Get PDF
    We apply the ``consistent discretization'' approach to general relativity leaving the spatial slices continuous. The resulting theory is free of the diffeomorphism and Hamiltonian constraints, but one can impose the diffeomorphism constraint to reduce its space of solutions and the constraint is preserved exactly under the discrete evolution. One ends up with a theory that has as physical space what is usually considered the kinematical space of loop quantum geometry, given by diffeomorphism invariant spin networks endowed with appropriate rigorously defined diffeomorphism invariant measures and inner products. The dynamics can be implemented as a unitary transformation and the problem of time explicitly solved or at least reduced to as a numerical problem. We exhibit the technique explicitly in 2+1 dimensional gravity.Comment: 4 pages, Revtex, no figure

    Finite, diffeomorphism invariant observables in quantum gravity

    Full text link
    Two sets of spatially diffeomorphism invariant operators are constructed in the loop representation formulation of quantum gravity. This is done by coupling general relativity to an anti- symmetric tensor gauge field and using that field to pick out sets of surfaces, with boundaries, in the spatial three manifold. The two sets of observables then measure the areas of these surfaces and the Wilson loops for the self-dual connection around their boundaries. The operators that represent these observables are finite and background independent when constructed through a proper regularization procedure. Furthermore, the spectra of the area operators are discrete so that the possible values that one can obtain by a measurement of the area of a physical surface in quantum gravity are valued in a discrete set that includes integral multiples of half the Planck area. These results make possible the construction of a correspondence between any three geometry whose curvature is small in Planck units and a diffeomorphism invariant state of the gravitational and matter fields. This correspondence relies on the approximation of the classical geometry by a piecewise flat Regge manifold, which is then put in correspondence with a diffeomorphism invariant state of the gravity-matter system in which the matter fields specify the faces of the triangulation and the gravitational field is in an eigenstate of the operators that measure their areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-

    How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity

    Get PDF
    Solutions to both the diffeomorphism and the hamiltonian constraint of quantum gravity have been found in the loop representation, which is based on Ashtekar's new variables. While the diffeomorphism constraint is easily solved by considering loop functionals which are knot invariants, there remains the puzzle why several of the known knot invariants are also solutions to the hamiltonian constraint. We show how the Jones polynomial gives rise to an infinite set of solutions to all the constraints of quantum gravity thereby illuminating the structure of the space of solutions and suggesting the existance of a deep connection between quantum gravity and knot theory at a dynamical level.Comment: 7p

    Dirac-like approach for consistent discretizations of classical constrained theories

    Get PDF
    We analyze the canonical treatment of classical constrained mechanical systems formulated with a discrete time. We prove that under very general conditions, it is possible to introduce nonsingular canonical transformations that preserve the constraint surface and the Poisson or Dirac bracket structure. The conditions for the preservation of the constraints are more stringent than in the continuous case and as a consequence some of the continuum constraints become second class upon discretization and need to be solved by fixing their associated Lagrange multipliers. The gauge invariance of the discrete theory is encoded in a set of arbitrary functions that appear in the generating function of the evolution equations. The resulting scheme is general enough to accommodate the treatment of field theories on the lattice. This paper attempts to clarify and put on sounder footing a discretization technique that has already been used to treat a variety of systems, including Yang--Mills theories, BF-theory and general relativity on the lattice.Comment: 11 pages, RevTe

    Consistent canonical quantization of general relativity in the space of Vassiliev knot invariants

    Get PDF
    We present a quantization of the Hamiltonian and diffeomorphism constraint of canonical quantum gravity in the spin network representation. The novelty consists in considering a space of wavefunctions based on the Vassiliev knot invariants. The constraints are finite, well defined, and reproduce at the level of quantum commutators the Poisson algebra of constraints of the classical theory. A similar construction can be carried out in 2+1 dimensions leading to the correct quantum theory.Comment: 4 pages, RevTex, one figur

    Fundamental decoherence from relational time in discrete quantum gravity: Galilean covariance

    Get PDF
    We have recently argued that if one introduces a relational time in quantum mechanics and quantum gravity, the resulting quantum theory is such that pure states evolve into mixed states. The rate at which states decohere depends on the energy of the states. There is therefore the question of how this can be reconciled with Galilean invariance. More generally, since the relational description is based on objects that are not Dirac observables, the issue of covariance is of importance in the formalism as a whole. In this note we work out an explicit example of a totally constrained, generally covariant system of non-relativistic particles that shows that the formula for the relational conditional probability is a Galilean scalar and therefore the decoherence rate is invariant.Comment: 10 pages, RevTe

    The Extended Loop Group: An Infinite Dimensional Manifold Associated with the Loop Space

    Get PDF
    A set of coordinates in the non parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analized in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.Comment: The resubmited paper contains the title and abstract, that were omitted in the previous version. 42 pages, report IFFI/93.0

    The physical hamiltonian in nonperturbative quantum gravity

    Full text link
    A quantum hamiltonian which evolves the gravitational field according to time as measured by constant surfaces of a scalar field is defined through a regularization procedure based on the loop representation, and is shown to be finite and diffeomorphism invariant. The problem of constructing this hamiltonian is reduced to a combinatorial and algebraic problem which involves the rearrangements of lines through the vertices of arbitrary graphs. This procedure also provides a construction of the hamiltonian constraint as a finite operator on the space of diffeomorphism invariant states as well as a construction of the operator corresponding to the spatial volume of the universe.Comment: Latex, 11 pages, no figures, CGPG/93/
    • …
    corecore