339 research outputs found

    A Two-Field Formulation for Surfactant Transport within the Algebraic Volume of Fluid Method

    Full text link
    Surfactant transport plays an important role in many technical processes and industrial applications such as chemical reactors, microfluidics, printing and coating technology. High fidelity numerical simulations of two-phase flow phenomena reveal rich insights into the flow dynamics, heat, mass and species transport. In the present study, a two-field formulation for surfactant transport within the algebraic volume of fluid method is presented. The slight diffuse nature of representing the interface in the algebraic volume of fluid method is utilized to track the concentration of surfactant at the interface as a volumetric concentration. Transport of insoluble and soluble surfactants is investigated by tracking two different concentrations of the surfactant, one within the bulk of the liquid and the other one at the interface. These two transport equations are in turn coupled by source terms considering the ad-/desorption processes at a liquid-gas interface. Appropriate boundary conditions at a solid-fluid interface are formulated to ensure surfactant conservation, while also enabling to study the ad-/desorption processes at a solid-fluid interface. The developed numerical method is verified by comparing the numerical simulations with well-known analytical and numerical reference solutions. The presented numerical methodology offers a seamless integration of surfactant transport into the algebraic volume of fluid method, where the latter has many advantages such as volume conservation and an inherent ability of handling large interface deformations and topological changes

    Room temperature magnetoelectric properties of type-II InAsSbP quantum dots and nanorings

    Get PDF
    Quaternary InAsSbP quantum dots (QDs) and quantum rings (QRs) are grown on InAs (100) substrates by liquid phase epitaxy. High resolution scanning electron and atomic force microscopes are used for the characterization. The room temperature optoelectronic and magnetoelectric properties of the InAsSbP type-II QDs and QRs are investigated. For the QD-based structures, specific dips on the capacitance-voltage characteristic are revealed and measured, which are qualitatively explained by the holes thermal and tunnel emissions from the QDs. Specific fractures at room temperature are experimentally found in the magnetic field dependence of an electric sheet resistance for the InAsSbP QRs-based sample. (C) 2012 American Institute of Physics. (doi:10.1063/1.3676437

    The cell cycle checkpoint system MAST(L)-ENSA/ARPP19-PP2A is targeted by cAMP/PKA and cGMP/PKG in anucleate human platelets

    Get PDF
    The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/Ī±-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19ā€“S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)ā€“ENSA/ARPP19ā€“PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems. Keywords: platelets; serine/threonine protein phosphatases; cyclic AMP; cyclic GMP; ENSA; ARPP19; MAP kinas

    Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza virus binds to cell receptors via sialic acid (SA) linked glycoproteins. They recognize SA on host cells through their haemagglutinins (H). The distribution of SA on cell surfaces is one determinant of host tropism and understanding its expression on human cells and tissues is important for understanding influenza pathogenesis. The objective of this study therefore was to optimize the detection of Ī±2,3-linked and Ī±2,6-linked SA by lectin histochemistry by investigating the binding of Sambucus nigra agglutinin (SNA) for SAĪ±2,6Gal and Maackia amurensis agglutinin (MAA) for SAĪ±2,3Gal in the respiratory tract of normal adults and children.</p> <p>Methods</p> <p>We used fluorescent and biotinylated SNA and MAA from different suppliers on archived and prospectively collected biopsy and autopsy specimens from the nasopharynx, trachea, bronchus and lungs of fetuses, infants and adults. We compared different methods of unmasking for tissue sections to determine if these would affect lectin binding. Using serial sections we then compared the lectin binding of MAA from different suppliers.</p> <p>Results</p> <p>We found that unmasking using microwave treatment in citrate buffer produced increased lectin binding to the ciliated and glandular epithelium of the respiratory tract. In addition we found that there were differences in tissue distribution of the Ī±2,3 linked SA when 2 different isoforms of MAA (MAA1 and MAA2) lectin were used. MAA1 had widespread binding throughout the upper and lower respiratory tract and showed more binding to the respiratory epithelium of children than in adults. By comparison, MAA2 binding was mainly restricted to the alveolar epithelial cells of the lung with weak binding to goblet cells. SNA binding was detected in bronchial and alveolar epithelial cells and binding of this lectin was stronger to the paediatric epithelium compared to adult epithelium. Furthermore, the MAA lectins from 2 suppliers (Roche and EY Labs) tended to only bind in a pattern similar to MAA1 (Vector Labs) and produced a different binding pattern to MAA2 from Vector Labs.</p> <p>Conclusion</p> <p>The lectin binding pattern of MAA may vary depending on the supplier and the different isoforms of MAA show a different tissue distribution in the respiratory tract. This finding is important if conclusions about the potential binding sites of SAĪ±2,3 binding viruses, such as influenza or human parainfluenza are to be made.</p

    Recent advances in symmetric and network dynamics

    Get PDF
    We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts RenĆ© Thom's general viewpoint, one version of which became known as ā€œcatastrophe theory.ā€ We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couetteā€“Taylor flow, flames, the Belousovā€“Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network

    Glycans as receptors for influenza pathogenesis

    Get PDF
    Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5AcĪ±2-3Gal linked (Ī±2-3) to Neu5AcĪ±2-6Gal linked (Ī±2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of Ī±2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to Ī±2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.National Institute of General Medical Sciences (U.S.) (Glue Grant U54 GM62116)National Institutes of Health (U.S.) (Grant GM57073)Singapore-MIT Alliance for Research and Technolog

    History matters: ecometrics and integrative climate change biology

    Get PDF
    Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through timeā€”an approach we call ā€˜ecometricsā€™. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing

    Adiabatic description of nonspherical quantum dot models

    Full text link
    Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size making use of the total sets of exact and adiabatic quantum numbers in appropriate analytic approximations
    • ā€¦
    corecore