366 research outputs found

    Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Get PDF
    Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper

    Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Get PDF
    Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper

    Ground state naïve pluripotent stem cells and CRISPR/Cas9 gene correction for β-thalassemia

    Get PDF
    The β-thalassemias are a group of hereditary diseases caused by more than 300 mutations of the adult β-globin gene, leading to low or absent production of adult hemoglobin (HbA) (1-3). Together with sickle cell anemia (SCA), thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counselling and prenatal diagnosis have contributed to the maintenance of a very high frequency in the population. The management of β-thalassemia patients is mostly based on blood transfusion, chelation therapy and, alternatively, on bone marrow transplantation (2). Recently, novel therapeutic options have been explored, such as gene therapy (3) and fetal hemoglobin (HbF) induction (4). Despite the fact that these approaches are promising, they are at present still under deep experimental development and limited to a low number of clinical trials (2-4). With respect to gene therapy for β-thalassemia significant progresses are expected, also considering fundamental insights into globin switching and new technology developments which might have a strong impact on novel gene-therapy approaches (3). A robust information is however available regarding the management of β-thalassemia, i.e., that patients exhibiting high levels of endogenous HbF might exhibit a milder clinical status, as in the case of hereditary persistence of fetal hemoglobin (HPFH) (4). In this context, one of the most exciting strategies recently proposed for hereditary diseases, including β-thalassemia, is genome editing using a variety of strongly validated approaches. Among these strategies, the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system (5-7), in which a single guide RNA (sgRNA) directs the Cas9 nuclease for site-specific cleavage, is considered the most efficient

    Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing

    Get PDF
    Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level “de novo” production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the “de novo” production of HbA using CRISPR-Cas9 gene editing

    Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Get PDF
    This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially ?-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating ?-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for ß-thalassemia.<br/

    Induction by TNF- α

    Get PDF
    We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells

    Applications to cancer research of "lab-on-a-chip" devices based on dielectrophoresis (DEP).

    Get PDF
    The recent development of advanced analytical and bioseparation methodologies based on microarrays and biosensors is one of the strategic objectives of the so-called post-genomic. In this field, the development of microfabricated devices could bring new opportunities in several application fields, such as predictive oncology, diagnostics and anti-tumor drug research. The so called "Laboratory-on-a-chip technology", involving miniaturisation of analytical procedures, is expected to enable highly complex laboratory testing to move from the central laboratory into non-laboratory settings. The main advantages of Lab-on-a-chip devices are integration of multiple steps of different analytical procedures, large variety of applications, sub-microliter consumption of reagents and samples, and portability. One of the requirement for new generation Lab-on-a-chip devices is the possibility to be independent from additional preparative/analytical instruments. Ideally, Lab-on-a-chip devices should be able to perform with high efficiency and reproducibility both actuating and sensing procedures. In this review, we discuss applications of dielectrophoretic(DEP)-based Lab-on-a-chip devices to cancer research. The theory of dielectrophoresis as well as the description of several devices, based on spiral-shaped, parallel and arrayed electrodes are here presented. In addition, in this review we describe manipulation of cancer cells using advanced DEP-based Lab-on-a-chip devices in the absence of fluid flow and with the integration of both actuating and sensing procedures

    A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs

    Get PDF
    Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the 'off-label' use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial

    Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on Taqman genotyping assays

    Get PDF
    The β-thalassemias are genetic disorder caused by more than 200 mutations in the β-globin gene, resulting in a total (β0) or partial (β+) deficit of the globin chain synthesis. The most frequent Mediterranean mutations for β-thalassemia are: β039, β+ VSI-110, β+IVSI-6 and β0IVSI-1. Several molecular techniques for the detection of point mutations have been developed based on the amplification of the DNA target by polymerase chain reaction (PCR), but they could be labor-intensive and technically demanding. On the contrary, Taq- Man® genotyping assays are a simple, sensitive and versatile method suitable for the single nucleotide polymorphism (SNP) genotyping affecting the human β-globin gene. Four Taq- Man® genotyping assays for the most common β-thalassemia mutations present in the Mediterranean area were designed and validated for the genotype characterization of genomic DNA extracted from 94 subjects comprising 25 healthy donors, 33 healthy carriers and 36 β- thalassemia patients. In addition, 15 specimens at late gestation (21-39 gestational weeks) and 11 at early gestation (5-18 gestational weeks) were collected from pregnant women, and circulating cell-free fetal DNAs were extracted and analyzed with these four genotyping assays. We developed four simple, inexpensive and versatile genotyping assays for the postnatal and prenatal identification of the thalassemia mutations β039, β+IVSI-110, β+IVSI-6, β0IVSI-1. These genotyping assays are able to detect paternally inherited point mutations in the fetus and could be efficiently employed for non-invasive prenatal diagnosis of β-globin gene mutations, starting from the 9th gestational week

    BCL11A mRNA targeting by miR-210: A possible network regulating γ-globin gene expression

    Get PDF
    The involvement of microRNAs in the control of repressors of human g-globin gene transcription has been firmly demonstrated, as described for the miR-486-3p mediated down-regulation of BCL11A. On the other hand, we have reported that miR-210 is involved in erythroid differentiation and, possibly, in γ-globin gene up-regulation. In the present study, we have identified the coding sequence of BCL11A as a possible target of miR-210. The following results sustain this hypothesis: (a) interactions between miR-210 and the miR-210 BCL11A site were demonstrated by SPR-based biomolecular interaction analysis (BIA); (b) the miR-210 site of BCL11A is conserved through molecular evolution; (c) forced expression of miR-210 leads to decrease of BCL11A-XL and increase of γ-globin mRNA content in erythroid cells, including erythroid precursors isolated from β-thalassemia patients. Our study suggests that the coding mRNA sequence of BCL11A can be targeted by miR-210. In addition to the theoretical point of view, these data are of interest from the applied point of view, supporting a novel strategy to inhibit BCL11A by mimicking miR-210 functions, accordingly with the concept supported by several papers and patent applications that inhibition of BCL11A is an efficient strategy for fetal hemoglobin induction in the treatment of β-thalassemia
    corecore