85 research outputs found

    Bacterial Modulation of Plant Ethylene Levels

    Get PDF
    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized

    Phytodepuration of Pyroligneous Liquor: A Case Study

    Get PDF
    Wastewaters generated by the pyrolytic process require treatments to reduce the risks of contamination in rivers, lakes, and coastal waters. Utilizing constructed wetlands is one of the possible approaches according to a Circular Economy System. Plant Growth-Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal Fungi (AMF) can improve plant growth and enhance the bioremediation of wastewater. Two experiments were set up: in the first, a pilot mesocosm was designed to evaluate the effects of a consortium of AM fungi and a PGPB strain on Phragmites australis. After 60 days, the highest plant growth was obtained after inoculation with the combination of microorganisms. In the second experiment, a constructed wetland was built to remediate wastewaters from gasification plant. The plants were efficient in scavenging biological oxygen demand (BOD5), chemical oxygen demand (COD), total fat and oils, hydrocarbons, phenols, aldehydes, surfactants, fluorides, sulfites, sulfates, nitrate, and phosphorus. These data suggest that inoculation of P. australis with AMF and PGPB strains significantly improve the depuration process of wastewaters from gasification plants via constructed wetlands

    Anti-bacterial prenylated phenols from the Kurdish medicinal plant Onobrychis carduchorum (Fabaceae)

    Get PDF
    Onobrychis carduchorum C.C. Towns. is a plant widely employed in the Kurdish traditional medicine, to cure inflammations and other skin diseases. We isolated ten different phenolic metabolites from an acetone extract of leaves and flowers. The phenolic compounds belong to three different classes, i.e.: 1. iso-flavones, having a genistein skeleton; 2. flavanones, bearing a naringenin skeleton; 3. dihydro-stilbenes. Many of them have a prenyl unit on an aromatic ring. The above compounds have been found to date mostly in other Fabaceae, as Glycyrrhiza glabra L. (liquorice)1. However, their bioactivities are largely unknown. In this work we reported a strong inhibition activity on the growth of Staphylococcus aureus, a well-known human pathogen. In particular, compound (Fig. 1) shows an inhibitory activity on growth, comparable to that of vancomycin, using the agar-diffusion standard method

    Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress

    Get PDF
    Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population

    Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization

    Get PDF
    Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal Fungi (AMF) can positively affect plant nutrition and growth. Recent studies have also shown that rhizospheric microorganisms can result in improved fruit features. Aim of this work was to evaluate, in an industrial farming, the effects of three selected biostimulants (consisting of a mix of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi), employed in conditions of reduced fertilization on yield, fruit quality and nutritional value. Tomato plants were inoculated with AM fungi and Pseudomonas sp. 19Fv1T or P. fluorescens C7, transplanted and grown in open field under conditions of reduced fertilization. The impact of the microorganisms on the fruit yield and nutritional value was assessed by measuring the production, fruit size and concentration of soluble sugars, organic acids, carotenoids and ascorbate. The size and biomass of tomato fruits were affected by the inocula. Sugar concentration was increased by the selected microorganisms. All the mixtures induced an enhancement of malic acid, while double colonization with AMF and PGPB increased \u3b2-carotene concentration in fruits if compared to controls. The results of the present study show that inoculation with soil microorganisms can help to drastically reduce the use of chemical fertilization, maintaining and, in some cases, even improving the tomato fruit yield and quality. This can lead to economical, environmental and human health benefits in relation to the increased sustainability

    Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Get PDF
    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein

    Current Techniques to Study Beneficial Plant-Microbe Interactions

    No full text
    Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants

    Current Techniques to Study Beneficial Plant-Microbe Interactions

    No full text
    Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants
    corecore