4 research outputs found

    A regulated auxin minimum is required for seed dispersal in Arabidopsis

    No full text
    Local hormone maxima are essential for the development of multicellular structures and organs. For example, steroid hormones accumulate in specific cell types of the animal fetus to induce sexual differentiation(1) and concentration peaks of the plant hormone auxin direct organ initiation and mediate tissue patterning(2-4). Here we provide an example of a regulated local hormone minimum required during organogenesis. Our results demonstrate that formation of a local auxin minimum is necessary for specification of the valve margin separation layer where Arabidopsis fruit opening takes place. Consequently, ectopic production of auxin, specifically in valve margin cells, leads to a complete loss of proper cell fate determination. The valve margin identity factor INDEHISCENT (IND) is responsible for forming the auxin minimum by coordinating auxin efflux in separation-layer cells. We propose that the simplicity of formation and maintenance make local hormone minima particularly well suited to specify a small number of cells such as the stripes at the valve margins

    TPLATE complex dependent endocytosis is required for shoot apical meristem maintenance by attenuating CLAVATA1 signaling

    No full text
    Abstract Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to sense and rapidly respond to both endogenous and environmental stimuli. The evolutionarily ancient TPLATE complex (TPC) plays an essential role in clathrin-mediated endocytosis (CME) in Arabidopsis plants. Knockout or strong knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause very mild developmental deviations. Here, we took advantage of the recently reported partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signalling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 (CLV3) peptide signalling. This hypersensitivity correlated with the abundance of the CLV3 receptor protein kinase CLAVATA1 (CLV1) at the plasma membrane. Genetic analysis and live-cell imaging revealed that TPC-dependent regulation of CLV3-dependent internalization of CLV1 from the plasma membrane is required for CLV3 function in the shoot. Our findings provide evidence that clathrin-mediated endocytosis of CLV1 is a mechanism to dampen CLV3-mediated signaling during plant development

    TPLATE complex‐dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance

    No full text
    International audienceEndocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC‐dependent endocytosis in receptor‐mediated signaling. We discovered that reduced TPC‐dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live‐cell imaging revealed that TPC‐dependent regulation of CLAVATA3‐dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC‐mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3‐mediated signaling during plant development

    Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    No full text
    Phototropism is an adaptation response, through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism, revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells, resulting in changes in auxin distribution and differential growth. In the dark, high expression and activity of the PINOID (PID) kinase correlates with apolar targeting of PIN3 to all cell sides. Following illumination, light represses PINOID transcription and PIN3 is polarized specifically to the inner cell sides by GNOM ARF GTPase GEF (guanine nucleotide exchange factor)-dependent trafficking. Thus, differential trafficking at the shaded and illuminated hypocotyl side aligns PIN3 polarity with the light direction, and presumably redirects auxin flow towards the shaded side, where auxin promotes growth, causing hypocotyls to bend towards the light. Our results imply that PID phosphorylation-dependent recruitment of PIN proteins into distinct trafficking pathways is a mechanism to polarize auxin fluxes in response to different environmental and endogenous cues
    corecore