68 research outputs found

    Socially Induced Synchronization of Every-other-day Egg Laying in a Seabird Colony

    Get PDF
    Spontaneous oscillator synchrony has been documented in a wide variety of electrical, mechanical, chemical, and biological systems, including the menstrual cycles of women and estrous cycles of Norway Rats (Rattus norvegicus). In temperate regions, many colonial birds breed seasonally in a time window set by photoperiod; some studies have suggested that heightened social stimulation in denser colonies can lead to a tightened annual reproductive pulse. It has been unknown, however, whether the analog of menstrual synchrony occurs in birdsthat is, whether avian ovulation cycles can synchronize on a daily timescale within the annual breeding pulse. We report every-other-day clutch-initiation and egg-laying synchrony in a breeding colony of Glaucous-winged Gulls (Larus glaucescens) and show that the level of synchrony declined with decreasing colony density. We also pose a mathematical model based on the hypothesis that preovulatory luteinizing hormone surges synchronize through social stimulation. Model predictions are consistent with observations. Finally, we suggest a procedure for identifying synchronous egg laying in other colonies and species. © 2010 by The American Ornithologists\u27 Union. All rights reserved

    Predicting Dynamics of Aggregate Loafing Behavior in Glaucous-winged Gulls (Larus glaucescens) at a Washington Colony

    Get PDF
    Seabirds move throughout the day in changing, patchy environments as they engage in various behaviors. We studied the diurnal abundance dynamics of Glaucous-winged Gulls (Larus glaucescens) in a habitat patch dedicated to loafing in the Strait of Juan de Fuca, Washington. We constructed three differential equation models as alternative hypotheses and then used model selection techniques to choose the one that most accurately described the system. We validated the model on an independent data set, made a priori model predictions, and conducted a field test of the predictions. Clear dynamic patterns emerged in the abundance of loafing gulls, even though individuals moved in and out of the loafing area more or less continuously throughout the day. Temporal patterns in aggregate loafing behavior are predicted by three environmental factors: day of the year, height of the tide, and solar elevation. This result is important for several reasons: (1) it reduces the aggregate behavior of complicated vertebrates to a simple mathematical equation, (2) it gives an example of a field system in which animal abundances are determined largely by low dimensional exogenous forces, and (3) it provides an example of accurate quantitative prediction of animal numbers in the field. From the point of view of conservation biology and resource management, the result is important because of the pervasive need to explain and predict numbers of organisms in time and space

    Prenatal exposure to multiple metallic and metalloid trace elements and the risk of bacterial sepsis in extremely low gestational age newborns: A prospective cohort study

    Get PDF
    Background Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. Methods We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002–2004). Concentrations of 8 trace elements—including 4 non-essential and 4 essential—were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. Results Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51–2.54), 1.94 (95% CI: 0.87–4.32), and 1.88 (95% CI: 0.90–3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68–1.25), 1.19 (95% CI: 0.92–1.55), and 0.77 (95% CI: 0.57–1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. Conclusions We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants

    Modeling Territory Attendance and Preening Behavior in a Seabird Colony as Functions of Environmental Conditions

    No full text
    In previous studies we developed a general compartmental methodology for modeling animal behavior and applied the methodology to marine birds and mammals. In this study we used the methodology to construct a system of two differential equations to model the dynamics of territory attendance and preening in a gull colony on Protection Island, Strait of Juan de Fuca, Washington. We found that colony occupancy was driven primarily by abiotic environmental conditions, including tide height, time of day, solar elevation, and wind speed over open water. For birds in the colony, preening behavior was driven to some extent by abiotic environmental conditions (including time of day, solar elevation, humidity, and wind speed on the colony), but apparently was driven primarily by local and/or biotic effects not included in the model. In terms of R 2 values, the model explained 65% and 37% of the variability in colony occupancy and preening data, respectively, as a function of these six abiotic environmental factors. © 2007 Taylor & Francis Group, LLC

    Predicting the Dynamics of Animal Behaviour in Field Populations

    No full text
    Many species show considerable variation in behaviour among individuals. We show that some behaviours are largely deterministic and predictable with mathematical models. We propose a general differential equation model of behaviour in field populations and use the methodology to explain and predict the dynamics of sleep and colony attendance in seabirds as a function of environmental factors. Our model explained over half the variability in the data to which it was fitted, and it predicted the dynamics of an independent data set. Differential equation models may provide new approaches to the study of behaviour in animals and humans. © 2007 The Association for the Study of Animal Behaviour
    • …
    corecore