537 research outputs found

    The formation of shear and density layers in stably stratified trubulent flows: linear processes

    Get PDF
    The initial evolution of the momentum and buoyancy fluxes in a freely decaying, stably stratified homogeneous turbulent flow with r.m.s. velocity uâ€Č0 and integral lengthscale l0 is calculated using a weakly inhomogeneous and unsteady form of the rapid distortion theory (RDT) in order to study the growth of small temporal and spatial perturbations in the large-scale mean stratification N(z, t) and mean velocity profile u(z, t) (here N is the local Brunt–VĂ€isĂ€lĂ€ frequency and u is the local velocity of the horizontal mean flow) when the ratio of buoyancy forces to inertial forces is large, i.e. Nl0/uâ€Č0[dbl greater-than sign]1. The lengthscale L of the perturbations in the mean profiles of stratification and shear is assumed to be large compared to l0 and the presence of a uniform background mean shear can be taken into account in the model provided that the inertial shear forces are still weaker than the buoyancy forces, i.e. when the Richardson number Ri = (N/[partial partial differential]zu)2[dbl greater-than sign]1 at each height. When a mean shear perturbation is introduced initially with no uniform background mean shear and uniform stratification, the analysis shows that the perturbations in the mean flow profile grow on a timescale of order N-1. When the mean density profile is perturbed initially in the absence of a background mean shear, layers with significant density gradient fluctuations grow on a timescale of order N−10 (where N0 is the order of magnitude of the initial Brunt–VĂ€isĂ€lĂ€ frequency) without any associated mean velocity gradients in the layers. These results are in good agreement with the direct numerical simulations performed by Galmiche et al. (2002) and are consistent with the earlier physically based conjectures made by Phillips (1972) and Posmentier (1977). The model also shows that when there is a background mean shear in combination with perturbations in the mean stratification, negative shear stresses develop which cause the mean velocity gradient to grow in the density layers. The linear analysis for short times indicates that the scale on which the mean perturbations grow fastest is of order uâ€Č0/N0, which is consistent with the experiments of Park et al. (1994). We conclude that linear mechanisms are widely involved in the formation of shear and density layers in stratified flows as is observed in some laboratory experiments and geophysical flows, but note that the layers are also significantly influenced by nonlinear and dissipative processes at large times

    Effect of cytostatic drug presence on extracellular polymeric substances formation in municipal wastewater treated by membrane bioreactor

    Get PDF
    The effect of the cyclophosphamide and its mean metabolites on extracellular polymeric substances (EPS) formation was investigated. Two lab-scale membrane bioreactors were followed in parallel (one with the cytostatic drugs, the second without). Chromatographic and spectroscopic studies (UV–Vis spectroscopy and IR spectroscopy) showed that the presence of CPs induced an increase in EPS concentration in the biological sludge, especially of soluble substances, mainly polysaccharides and proteins. Size exclusion chromatography analysis revealed that in the presence of CPs, macromolecular EPS were formed (polysaccharides corresponding to about 6 KDa and proteins to about 18 KDa). The formation of EPS seemed to be a protection mechanism. More important membrane fouling in reactor with CPs seemed to be related to the retention of an increased amount of soluble substances

    Studies on the Mechanism of Glycerate 3-Phosphate Synthesis in Tomato and Maize Leaves

    Full text link

    Fluorescent Liquid Tetrazines

    Get PDF
    Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the [Formula: see text] [Formula: see text] and the higher-lying [Formula: see text] [Formula: see text] states cross, at which point the spin-orbit coupling exceeding 10 cm [Formula: see text] allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films

    Prospective assessment of CYP2D6 by genotyping, phenotyping and measurement of tamoxifen, PD 05-09 4-hydroxy-tamoxifen and endoxifen in breast cancer patients treated with tamoxifen.

    Get PDF
    Tamoxifen (tam) is a widely used endocrine therapy in the treatment of early and advanced stage breast cancer in women and men. It is a pro-drug having weak affinity with the estrogen receptor and needs to be converted to its main metabolite, endoxifen (endox), to have full anticancer activity. Cytochrome 2D6 (CYP2D6) plays a major role in the metabolism of tamoxifen to endoxifen. It is genetically highly polymorphic and its activity influences profoundly the synthesis of endoxifen and potentially the efficacy of tamoxifen treatment. Genotyping is currently the most widely used approach in studies and also in clinical practice to categorize patients as poor- (PM), intermediate- (IM), extensive- (EM) and ultra rapid-metabolizers (UM). Some clinicians already use genotyping in order to tailor the endocrine therapy of their patients. Owing to the large inter-individual variations in concentrations of the active moitey due to genetic and non-genetic influences renders the predictive value of the test uncertain for an individual patient. A significant number of patients classified as EM or IM by genotyping have indeed relatively low endoxifen levels similar to PMs1. This suggests that genotyping is probably not the opti ma l meth o d f or predi cti ng end oxif en l evels

    Degraded Carrageenan Causing Colitis in Rats Induces TNF Secretion and ICAM-1 Upregulation in Monocytes through NF-ÎșB Activation

    Get PDF
    Carrageenan (CGN) is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN) can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1) to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2) to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM) and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-α expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-ÎșB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype

    Towards Scientific Incident Response

    Get PDF
    A scientific incident analysis is one with a methodical, justifiable approach to the human decision-making process. Incident analysis is a good target for additional rigor because it is the most human-intensive part of incident response. Our goal is to provide the tools necessary for specifying precisely the reasoning process in incident analysis. Such tools are lacking, and are a necessary (though not sufficient) component of a more scientific analysis process. To reach this goal, we adapt tools from program verification that can capture and test abductive reasoning. As Charles Peirce coined the term in 1900, “Abduction is the process of forming an explanatory hypothesis. It is the only logical operation which introduces any new idea.” We reference canonical examples as paradigms of decision-making during analysis. With these examples in mind, we design a logic capable of expressing decision-making during incident analysis. The result is that we can express, in machine-readable and precise language, the abductive hypotheses than an analyst makes, and the results of evaluating them. This result is beneficial because it opens up the opportunity of genuinely comparing analyst processes without revealing sensitive system details, as well as opening an opportunity towards improved decision-support via limited automation

    Actinomyces in Chronic Granulomatous Disease: An Emerging and Unanticipated Pathogen

    Get PDF
    Background.Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system that causes defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections, mostly by catalase-producing organisms. We report for the first time, to our knowledge, chronic infections with Actinomyces species in 10 patients with CGD. Actinomycosis is a chronic granulomatous condition that commonly manifests as cervicofacial, pulmonary, or abdominal disease, caused by slowly progressive infection with oral and gastrointestinal commensal Actinomyces species. Treatment of actinomycosis is usually simple in immunocompetent individuals, requiring long-term, high-dose intravenous penicillin, but is more complicated in those with CGD because of delayed diagnosis and an increased risk of chronic invasive or debilitating disease. Methods.Actinomyces was identified by culture, staining, 16S ribosomal DNA polymerase chain reaction, and/or a complement fixation test in 10 patients with CGD. Results.All 10 patients presented with a history of fever and elevated inflammatory signs without evident focus. Diagnosis was delayed and clinical course severe and protracted despite high-dose intravenous antibiotic therapy and/or surgery. These results suggest an unrecognized and unanticipated susceptibility to weakly pathogenic Actinomyces species in patients with CGD because these are catalase-negative organisms previously thought to be nonpathogenic in CGD. Conclusions.Actinomycosis should be vigorously sought and promptly treated in patients with CGD presenting with uncommon and prolonged clinical signs of infection. Actinomycosis is a catalase-negative infection important to consider in CG
    • 

    corecore