1,269 research outputs found

    Habitat Attributes Dictate the Roles of Dispersal and Environmental Filtering on Metacommunity Assembly at Coastal Soft‑Bottom Ecosystems

    Get PDF
    Tracking the effects of habitat attributes on species distribution is pivotal to the understanding of community assembly across space and time. We used the elements of metacommunity (EMS), which evaluates coherence, turnover, and boundary clumping of species, to access the spatial patterns of nematodes from three coastal habitats with increasing degree to wave exposure, namely, mangroves, estuarine unvegetated tidal flats, and sandy beaches. Each habitat was sampled in four locations, hundreds of kilometers apart from each other. We hypothesized that (1) coastal habitats act as metacommunity boundaries and drive positive turnover and clumped distribution of species and (2) metacommunity structure within coastal habitats depends on the habitats’ degree to wave exposure since wave energy generally decreases sediment heterogeneity and favors connectivity among locations. Habitats were the main drivers of species turnover, with tidal flats harboring a transitional assemblage between mangrove and sandy beach. Metacommunities from the different habitats showed distinct patterns of organization among locations. Mangroves were characterized by species loss, with smaller areas of mangroves harboring a subset of the species pool present on larger areas of mangroves. Tidal flats showed positive species turnover among the different estuaries, with co-occurring species responding as a group to environmental variations. Both patterns indicate environmental filtering as the main driver at these less wave-exposed habitats. At sandy beaches, in contrast, metacommunity displayed a random pattern, suggesting high connectivity among locations. Our study confirmed that habitat attributes may induce distinct mechanisms of metacommunity assembly at coastal soft-bottom ecosystems.publishedVersio

    7-Bromo-4b-methyl-7,8-dihydro-4bH-9-thia-8a-aza­fluorene 9,9-dioxide

    Get PDF
    The title compound, C12H12BrNO2S, was isolated after direct irradiation (hν 350 nm, hexa­ne) of a mixture of stereoisomeric sulfonamides containing a vicinal dibromide and a conjugated diene. This product is one of a group of substrates that has contributed to our understanding of the photoreactivity patterns of non-bridged sulfonamides. The crystal structure was determined from a non-merohedrally twinned data set, where the twin law corresponded to a 180° rotation about the a* axis. The minor twin component refined to a value of 0.176 (3). The conformation of the mol­ecule is planar at one end, as the benzene ring and the adjacent fused five-membered ring are coplanar, and U-shaped at the other end, where the five-membered ring is fused to the heterocyclic six-membered ring containing an allyl bromide group

    Respondents of health survey powered by the innovative NURO app exhibit correlations between exercise frequencies and diet habits, and between stress levels and sleep wellness

    Get PDF
    Nurosene's NURO app (nurosene.com) is an innovative smartphone application that gathers and analyzes active self-report metrics from users, empowering them with data-driven health machine intelligence. We present the data collected and analyzed from the initial round of participants who responded to a 12-question survey on their life-style and health status. Exploratory results using a variational autoencoder (VAE) suggested that much of the variability of the 12 dimensional data could be accounted for by two approximately uncorrelated latent variables: one pertaining to stress and sleep, and the other pertaining to exercise and diet. Subsequent modeling of the data using exploratory and confirmatory factor analyses (EFAs and CFAs) found that optimal data fits consisted of four factors, namely exercise, diet, stress, and sleep. Covariance values were high between exercise and diet, and between stress and sleep, but much lower between other pairings of non-identical factors. Both EFAs and CFAs provided extra contexts to and quantified the more preliminary VAE observations. Overall, our results significantly reduce the apparent complexity of the response data. This reduction allows for more efficient future stratification and analyses of participants based on simpler latent variables. Our discovery of novel relationships between stress and sleep, and between exercise and diet suggests the possibility of applying predictive analytics in future efforts

    A low-temperature phase of bis(tetrabutylammonium) octa-l3-chloridohexachlorido- octahedro-hexatungstate

    Get PDF
    The article discusses the low-temperature phase of bis(tetrabutylammonium) octa-µ3-chlorido-hexachlorido-octahedro-hexa-tungstate, which undergoes a reversible phase transition at 268 K. The unit cells of the room- and low-temperature polymorphs of this compound are found to be closely related. The hydrocarbon chain of one of the tetrabutylammonium cations is found to be disordered at both 150 and 200 K

    Urinary estrogen metabolites and prostate cancer : a case-control study and meta-analysis

    Get PDF
    Objective: To investigate prostate cancer (Pca) risk in relation to estrogen metabolism, expressed as urinary 2-hydroxyestrone (2-OHE1), 16α-hydroxyestrone (16α-OHE1) and 2-OHE1 to 16α-OHE1 ratio. Methods: We conducted a case-control study within the Western New York Health Cohort Study (WNYHCS) from 1996 to 2001. From January 2003 through September 2004, we completed the re-call and follow-up of 1092 cohort participants. Cases (n = 26) and controls (n = 110) were matched on age, race and recruitment period according to a 1:4 ratio. We used the unconditional logistic regression to compute crude and adjusted odds ratios (OR) and 95% confident interval (CI) of Pca in relation to 2-OHE1, 16αOHE1 and 2-OHE1 to 16α-OHE1 by tertiles of urine concentrations (stored in a biorepository for an average of 4 years). We identified age, race, education and body mass index as covariates. We also conducted a systematic review of the literature which revealed no additional studies, but we pooled the results from this study with those from a previously conducted case-control study using the DerSimonian-Laird random effects method. Results: We observed a non-significant risk reduction in the highest tertile of 2-OHE1 (OR 0.72, 95% CI 0.25-2.10). Conversely, the odds in the highest tertile of 16α-OHE1 showed a non-significant risk increase (OR 1.76 95% CI 0.62-4.98). There was a suggestion of reduced Pca risk for men in the highest tertile of 2-OHE1 to 16α-OHE1 ratio (OR 0.56, 95% CI 0.19-1.68). The pooled estimates confirmed the association between an increased Pca risk and higher urinary levels of 16α-OHE1 (third vs. first tertile: OR 1.82, 95% CI 1.09-3.05) and the protective effect of a higher 2-OHE 1 to 16α-OHE1 ratio (third vs. first tertile: OR 0.53, 95% CI 0.31-0.90). Conclusion: Our study and the pooled results provide evidence for a differential role of the estrogen hydroxylation pathway in Pca development and encourage further study

    Pd-based membranes performance under hydrocarbon exposure for propane dehydrogenation processes: Experimental and modeling

    Get PDF
    In this work, a novel Pd–Ag double-skinned (DS-) membrane is used for the first time in conditions typical of propane dehydrogenation (PDH). This membrane presents a protective layer on top of the H2-selective one, which acts as shield against chemical deactivation and mechanical erosion under reaction conditions. While the protective layer is already been proven as an efficient barrier against membrane erosion in fluidized beds, there is no validation yet under PDH reaction. The DS- membrane performance is compared with a conventional (C-) Pd–Ag membrane under alkane/alkene exposure, at 400–500 °C and 3 bar, to investigate whether the incorporation of the protective layer would be suited for H2 separation in PDH systems, and if coking rate would be affected. The novel membrane shows a H2 permeance of 2.28 × 10−6 mol∙m−2 s−1∙Pa−1 at 500 ᵒC and 4 bar of pressure difference, overcoming the performance of the conventional PdAg one (1.56x∙10−6 mol m−2 s−1∙Pa−1). Both membranes present a stable H2 flux under alkane exposure, while deactivation occurs under exposure to alkenes. A model able to describe the H2 flux through Pd-based membranes is presented to fit the experimental data and predict membrane performance. The model includes mass transfer limitations in the retentate and a corrective inhibition factor to account for the competitive adsorption of hydrocarbon species in the H2 selective layer. The experimental results obtained under alkene exposure deviates from model predictions; this can be attributed to carbon deposition on the surface of the selective layer, as further detected on the DS-membrane by Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Analysis (EDX), which is the main factor for membrane deactivation.European Union´s Horizon 2020 research and innovation program under grant agreement No 814671 (BiZeolCat
    corecore