8,266 research outputs found

    Singularity theorems based on trapped submanifolds of arbitrary co-dimension

    Full text link
    Standard singularity theorems are proven in Lorentzian manifolds of arbitrary dimension n if they contain closed trapped submanifolds of arbitrary co-dimension. By using the mean curvature vector to characterize trapped submanifolds, a unification of the several possibilities for the boundary conditions in the traditional theorems and their generalization to arbitrary co-dimension is achieved. The classical convergence conditions must be replaced by a condition on sectional curvatures, or tidal forces, which reduces to the former in the cases of co-dimension 1, 2 or n.Comment: 11 pages, no figures, some corrections

    Topological censorship for Kaluza-Klein space-times

    Full text link
    The standard topological censorship theorems require asymptotic hypotheses which are too restrictive for several situations of interest. In this paper we prove a version of topological censorship under significantly weaker conditions, compatible e.g. with solutions with Kaluza-Klein asymptotic behavior. In particular we prove simple connectedness of the quotient of the domain of outer communications by the group of symmetries for models which are asymptotically flat, or asymptotically anti-de Sitter, in a Kaluza-Klein sense. This allows one, e.g., to define the twist potentials needed for the reduction of the field equations in uniqueness theorems. Finally, the methods used to prove the above are used to show that weakly trapped compact surfaces cannot be seen from Scri.Comment: minor correction

    A Double Outburst from IGR J00291+5934: Implications for Accretion Disk Instability Theory

    Full text link
    The accretion-powered millisecond pulsar IGR J00291+5934 underwent two ~10 d long outbursts during 2008, separated by 30 d in quiescence. Such a short quiescent period between outbursts has never been seen before from a neutron star X-ray transient. X-ray pulsations at the 599 Hz spin frequency are detected throughout both outbursts. For the first time, we derive a pulse phase model that connects two outbursts, providing a long baseline for spin frequency measurement. Comparison with the frequency measured during the 2004 outburst of this source gives a spin-down during quiescence of -4(1)x10^-15 Hz/s, approximately an order of magnitude larger than the long-term spin-down observed in the 401 Hz accretion-powered pulsar SAX J1808.4-3658. If this spin-down is due to magnetic dipole radiation, it requires a 2x10^8 G field strength, and its high spin-down luminosity may be detectable with the Fermi Large Area Telescope. Alternatively, this large spin-down could be produced by gravitational wave emission from a fractional mass quadrupole moment of Q/I = 1x10^{-9}. The rapid succession of the outbursts also provides a unique test of models for accretion in low-mass X-ray binaries. Disk instability models generally predict that an outburst will leave the accretion disk too depleted to fuel a second outburst after such a brief quiescence. We suggest a modification in which the outburst is shut off by the onset of a propeller effect before the disk is depleted. This model can explain the short quiescence and the unusually slow rise of the light curve of the second 2008 outburst.Comment: 17 pages, 8 figures; accepted by Ap

    Inertial navigation/calibration/precise time and frequency capabilities

    Get PDF
    The Aerospace Guidance and Metrology Center was conceived in 1959 to be the US Air Force Inertial Navigation and Metrology Center. This paper will show the mission capabilities of the Inertial Navigation Maintenance Center and the Air Force Measurement and Standards Laboratory. Highlighted will be the precise time and frequency program developed by AGMC to support Air Force precise time and frequency requirements worldwide. A description of the past, present, and future precise time and frequency activities will be presented

    Erosion-corrosion behaviour of Zirconia WC-6Co, WC-6Ni and SS316

    Get PDF
    The current study investigates a ceramic, two cermets and a metal under solid-liquid impingement with 3.5% NaCl and 150mg/l hydraulic fracturing sand at two extreme angles of impact, 90° and 20°. The materials tested were Zirconia, sintered WC-6Co, sintered WC-6Ni and SS316. Each material was exposed to a testing regime using re-circulating impinging jet apparatus with a velocity of 19m/s and one hour duration. The electrochemical properties of the materials were investigated in-situ through anodic and cathodic polarisation and application of cathodic protection. Post experimental analysis of the degraded surface was completed using Scanning Electron Microscopy (SEM) and Optical 3D Imaging. Zirconia exhibited a brittle response to erosion-corrosion testing with the mass loss at 90° being fifty times greater than the negligible mass loss at 20°. WC-6Co and WC-6Ni both outperformed SS316 under all solid-liquid impingement erosion-corrosion testing regimes. WC-6Ni exhibited slightly better erosion-corrosion resistance over WC-6Co at both 90° and 20°. SS316 had the best corrosion resistance and showed passivation during anodic polarisations in solid-liquid impingement conditions. The nickel binder increased the corrosion resistance of WC-6Ni over WC-6Co. Cathodic protection was successfully applied on sintered WC-6Co and SS316 isolating the key components of erosion-corrosion

    A simple proof of the recent generalisations of Hawking's black hole topology theorem

    Full text link
    A key result in four dimensional black hole physics, since the early 1970s, is Hawking's topology theorem asserting that the cross-sections of an "apparent horizon", separating the black hole region from the rest of the spacetime, are topologically two-spheres. Later, during the 1990s, by applying a variant of Hawking's argument, Gibbons and Woolgar could also show the existence of a genus dependent lower bound for the entropy of topological black holes with negative cosmological constant. Recently Hawking's black hole topology theorem, along with the results of Gibbons and Woolgar, has been generalised to the case of black holes in higher dimensions. Our aim here is to give a simple self-contained proof of these generalisations which also makes their range of applicability transparent.Comment: 12 pages, 1 figur

    On the Gannon-Lee Singularity Theorem in Higher Dimensions

    Full text link
    The Gannon-Lee singularity theorems give well-known restrictions on the spatial topology of singularity-free (i.e., nonspacelike geodesically complete), globally hyperbolic spacetimes. In this paper, we revisit these classic results in the light of recent developments, especially the failure in higher dimensions of a celebrated theorem by Hawking on the topology of black hole horizons. The global hyperbolicity requirement is weakened, and we expand the scope of the main results to allow for the richer variety of spatial topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra

    Goldstone Gauginos

    Full text link
    Models of supersymmetry with Dirac gauginos provide an attractive scenario for physics beyond the standard model. The "supersoft" radiative corrections and suppressed SUSY production at colliders provide for more natural theories and an understanding of why no new states have been seen. Unfortunately, these models are handicapped by a tachyon which is naturally present in existing models of Dirac gauginos. We argue that this tachyon is absent, with the phenomenological successes of the model preserved, if the right handed gaugino is a (pseudo-)Goldstone field of a spontaneously broken anomalous flavor symmetry.Comment: 5 pages, 1 figure. v2: minor changes to text, references added and update

    Models of Goldstone Gauginos

    Full text link
    Models with Dirac gauginos provide appealing scenarios for physics beyond the standard model. They have smaller radiative corrections to the Higgs mass, a suppression of certain SUSY production processes, and ameliorated flavor constraints. Unfortunately, they also generally have tachyons, the solutions to which typically spoil these positive features. The recently proposed "Goldstone Gaugino" mechanism provides a simple solution that eliminates these tachyonic states. We provide details on this mechanism and explore models for its origin. In particular, we find SUSY QCD models that realize this idea simply, and discuss scenarios for unification.Comment: 33 pages, 4 figure

    ARTZ 331.02: Ceramics II - Wheel Throwing

    Get PDF
    • …
    corecore