3,533 research outputs found

    Unpowered Aerodynamic Characteristics of a 15-Percent Scale Model of a Twin-Engine Commuter Aircraft

    Get PDF
    An experimental investigation was conducted in the Ames 12-Foot Pressure Wind Tunnel to determine the unpowered aerodynamic characteristics of a 15-percent-scale model of a twin-engine commuter aircraft. Model longitudinal aerodynamic characteristics were examined at discrete flap deflections for various angle-of-attack and wind-tunnel-velocity ranges with the empennage on and off. Data are presented for the basic model configuration consisting of the fuselage, wing, basic wing leading edge, double slotted flaps, midengine nacelles, and empennage. Other configurations tested include a particle-span drooped leading edge (dropped outboard of the engine nacelles), a full-span drooped leading edge, low- and high-mounted engine nacelles, and a single-slotted flap. An evaluation was made of the model mounting system by comparing data obtained with the model mounted conventionally on the wind-tunnel model-support struts and the model inverted

    Soliton Solutions to the Einstein Equations in Five Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson--(anti)-de Sitter ((A)dS) metrics, with the added feature of having Lorentzian signatures. They provide an affirmative answer to the open question as to whether or not there exist solutions with negative cosmological constant that asymptotically approach AdS5/Γ_{5}/\Gamma, but have less energy than AdS5/Γ_{5}/\Gamma. We present evidence that these solutions are the lowest-energy states within their asymptotic class.Comment: 9 pages, Latex; Final version that appeared in Phys. Rev. Lett; title changed by journal from original title "Eguchi-Hanson Solitons

    Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114

    Full text link
    Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX J0812.4-3114 and A 0535+26) have previously been suggested to arise from partial eclipses of the emission region by the accretion column occurring once each rotation period. We present pulse-phase spectroscopy from Rossi X-ray Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for the first time confirms this interpretation. The dip phase corresponds to the closest approach of the column axis to the line of sight, and the additional optical depth for photons escaping from the column in this direction gives rise to both the decrease in flux and increase in the fitted optical depth measured at this phase. Analysis of the arrival time of individual dips in GX~1+4 provides the first measurement of azimuthal wandering of a neutron star accretion column. The column longitude varies stochastically with standard deviation 2-6 degrees depending on the source luminosity. Measurements of the phase width of the dip both from mean pulse profiles and individual eclipses demonstrates that the dip width is proportional to the flux. The variation is consistent with that expected if the azimuthal extent of the accretion column depends only upon the Keplerian velocity at the inner disc radius, which varies as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference

    Spectral variation in the X-ray pulsar GX 1+4 during a low-flux episode

    Get PDF
    The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51ks between 1996 July 19 - 21. During this period the flux decreased smoothly from an initial mean level of ~ 6 X 10^36 erg/s to a minimum of ~ 4 X 10^35 erg/s (2-60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation. BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals. The single best-fitting spectral model was based on a component originating from thermal photons with kT ~ 1 keV Comptonised by a plasma of temperature kT \~ 7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density nH contributing to the mean spectral change. A strong flare of duration 50 s was observed during the interval of minimum flux, with the peak flux ~ 20 times the mean level. Although beaming effects are likely to mask the true variation in Mdot thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.Comment: 8 pages, 3 figures, submitted to MNRA

    The Moidart earthquakes of 4 August 2017

    Get PDF
    The Moidart earthquake of 4 August 2017 (4.0 ML) was the largest earthquake in Scotland for 18 years. The earthquake was felt widely across the west of Scotland. Only five other earthquakes of this size or greater have been observed in the period of instrumental recording from 1970 to present. Historical observations and instrumental recordings have been used to estimate that an earthquake of 4.0 ML or greater occurs somewhere in Scotland roughly every 8-9 years on average. The earthquake hypocentre was calculated using an iterative linearized method. The results suggest that the earthquake occurred in the mid-Crust at a depth of approximately 12 km. This is largely consistent with observed focal depths for other earthquakes in the region, which are distributed throughout the upper 20 km of the Crust. The strong similarity between the recorded ground motions from the mainshock and the four recorded aftershocks suggests that they all occurred within a small source volume, of the order of a few hundred metres in extent and had similar source mechanisms. The modelled source displacement spectra provide a good fit for the observed displacement spectra and suggest a moment magnitude (Mw) of 3.6 ± 0.1. This is slightly less than that expected for an earthquake with a local magnitude of 4.0 ML using commonly used empirical relationships relating local and moment magnitude, which gives an expected moment magnitude of 3.7. The calculated focal mechanism suggests that the earthquake resulted from strike-slip faulting on a fault plane that strikes either SW-NE or NW-SE and dips steeply, although the dip of both fault planes is rather poorly constrained. This is in good agreement with focal mechanisms calculated for other earthquakes across the region, which all show similar solutions. Seismicity in northwest Scotland is clustered around a number of large, steeply dipping major faults that strike either NE-SW or NW-SE suggesting that earthquake activity across the region is driven by reactivation of such fault systems by deformation associated with first-order plate motions rather than deformation associated with glacioisostatic recovery. Although there are no mapped major fault systems in the immediate vicinity of the Moidart earthquake, it seems likely that the earthquake also occurred on a steeply dipping fault that strikes either NE-SW or NW-SE but remains unmapped

    On the Gannon-Lee Singularity Theorem in Higher Dimensions

    Full text link
    The Gannon-Lee singularity theorems give well-known restrictions on the spatial topology of singularity-free (i.e., nonspacelike geodesically complete), globally hyperbolic spacetimes. In this paper, we revisit these classic results in the light of recent developments, especially the failure in higher dimensions of a celebrated theorem by Hawking on the topology of black hole horizons. The global hyperbolicity requirement is weakened, and we expand the scope of the main results to allow for the richer variety of spatial topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra

    Chandra observations of the millisecond X-ray pulsar IGR J00291+5934 in quiescence

    Get PDF
    In this Paper we report on our analysis of three Chandra observations of the accretion-powered millisecond X-ray pulsar IGR J00291+5934 obtained during the late stages of the 2004 outburst. We also report the serendipitous detection of the source in quiescence by ROSAT during MJD 48830-48839. The detected 0.3-10 keV source count rates varied significantly between the Chandra observations from (7.2+-1.2)x10^-3, (6.8+-0.9)x10^-3, and (1.4+-0.1)x10^-2 counts per second for the 1st, 2nd, and 3rd Chandra observation, on MJD 53371.88, 53383.99, and 53407.57, respectively. The count rate for the 3rd observation is 2.0+-0.4 times as high as that of the average of the first two observations. The unabsorbed 0.5-10 keV source flux for the best-fit power-law model to the source spectrum was (7.9+-2.5)x10^-14, (7.3+-2.0)x10^-14, and (1.17+-0.22)x10^-13 erg cm^-2 s^-1 for the 1st, 2nd, and 3rd Chandra observation, respectively. We find that this source flux is consistent with that found by ROSAT [~(5.4+-2.4)x10^-14 erg cm^-2 s^-1]. Under the assumption that the interstellar extinction, N_H, does not vary between the observations, we find that the blackbody temperature during the 2nd Chandra observation is significantly higher than that during the 1st and 3rd observation. Furthermore, the effective temperature of the neutron star derived from fitting an absorbed blackbody or neutron star atmosphere model to the data is rather high in comparison with many other neutron star soft X-ray transients in quiescence, even during the 1st and 3rd observation. If we assume that the source quiescent luminosity is similar to that measured for two other accretion powered millisecond pulsars in quiescence, the distance to IGR J00291+5934 is 2.6-3.6 kpc.Comment: 7 pages, 3 Figures, accepted for publication in MNRA

    Charmonium properties from lattice QCD + QED: hyperfine splitting, J/ψJ/\psi leptonic width, charm quark mass and aμca_{\mu}^c

    Get PDF
    We have performed the first nf=2+1+1n_f = 2+1+1 lattice QCD computations of the properties (masses and decay constants) of ground-state charmonium mesons. Our calculation uses the HISQ action to generate quark-line connected two-point correlation functions on MILC gluon field configurations that include u/du/d quark masses going down to the physical point, tuning the cc quark mass from MJ/ψM_{J/\psi} and including the effect of the cc quark's electric charge through quenched QED. We obtain MJ/ψMηcM_{J/\psi}-M_{\eta_c} (connected) = 120.3(1.1) MeV and interpret the difference with experiment as the impact on MηcM_{\eta_c} of its decay to gluons, missing from the lattice calculation. This allows us to determine ΔMηcannihiln\Delta M_{\eta_c}^{\mathrm{annihiln}} =+7.3(1.2) MeV, giving its value for the first time. Our result of fJ/ψ=f_{J/\psi}= 0.4104(17) GeV, gives Γ(J/ψe+e)\Gamma(J/\psi \rightarrow e^+e^-)=5.637(49) keV, in agreement with, but now more accurate than experiment. At the same time we have improved the determination of the cc quark mass, including the impact of quenched QED to give mc(3GeV)\overline{m}_c(3\,\mathrm{GeV}) = 0.9841(51) GeV. We have also used the time-moments of the vector charmonium current-current correlators to improve the lattice QCD result for the cc quark HVP contribution to the anomalous magnetic moment of the muon. We obtain aμc=14.638(47)×1010a_{\mu}^c = 14.638(47) \times 10^{-10}, which is 2.5σ\sigma higher than the value derived using moments extracted from some sets of experimental data on R(e+ehadrons)R(e^+e^- \rightarrow \mathrm{hadrons}). This value for aμca_{\mu}^c includes our determination of the effect of QED on this quantity, δaμc=0.0313(28)×1010\delta a_{\mu}^c = 0.0313(28) \times 10^{-10}.Comment: Added extra discussion on QED setup, some new results to study the effects of strong isospin breaking in the sea (including new Fig. 1) and a fit stability plot for the hyperfine splitting (new Fig. 7). Version accepted for publication in PR

    Transformation between Australian datums using a modified transverse Mercator projection

    Get PDF
    The introduction of the Geocentric Datum of Australia (GDA94) in the year 2000 will undoubtedly require the transformation of a large amount of coordinate data in Australia. This paper presents a modified transverse Mercator (MTM) map-projection such that the latitude and longitude on one datum are projected so that they closely agree with the transverse Mercator easting and northing on another datum. This approach will allow the introduction of the GDA94 whilst preserving Australian Map Grid (AMG) coordinates. Conversely, the MTM projection can be used to transform coordinates directly from the Australian Geodetic Datum (AGD) to the new Map Grid of Australia (MGA94). In order to test these two approaches, MTM parameters have been computed from 82 co-located GDA94/MGA94 and AGD98/AMG84 coordinates that comprise the Western Australian STATEFIX geodetic network. When using the national seven- and three-parameter datum transformations, the maximum differences between observed and transformed coordinates are 2.04m and 2.21m, respectively. When using the transformation by MTM projection, the projected coordinates agree with the observed coordinates to less than 2.04m

    On the Structure of the Magnetic Field in a Kinematic ABC Flow Dynamo

    Full text link
    The kinematic induction equation of MHD is solved numerically in the case of the normal ``111'' ABC flow using a general staggered mesh method. Careful 3-D visualizations of the topology of the magnetic field reveal that previous conclusions about the modes of operation of this type of kinematic dynamo must be revised. The two known windows of dynamo action at low and high magnetic Reynolds number, correspond to two distinct modes, both relying crucially on the replenishing of the magnetic field near a discontinuity at the beta-type stagnation points in the flow. One of these modes display double magnetic structures that were previously found only to obscure the physics of the dynamo: They turn out, however, to play an important part in the process of amplifying the magnetic field. Invariant properties of the mode in the second magnetic Reynolds number window support the case for the normal ABC flow as a fast dynamo.Comment: Associated webpage, see http://www.astro.su.se/~dorch/dynamo
    corecore