543 research outputs found

    Some possibly degenerate elliptic problems with measure data and non linearity on the boundary

    Full text link
    The goal of this paper is to study some possibly degenerate elliptic equation in a bounded domain with a nonlinear boundary condition involving measure data. We investigate two types of problems: the first one deals with the laplacian in a bounded domain with measure supported on the domain and on the boundary. A second one deals with the same type of data but involves a degenerate weight in the equation. In both cases, the nonlinearity under consideration lies on the boundary. For the first problem, we prove an optimal regularity result, whereas for the second one the optimality is not guaranteed but we provide however regularity estimates

    Incompressible immiscible multiphase flows in porous media: a variational approach

    Get PDF
    We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schem\`e a la [R. Jordan, D. Kinder-lehrer \& F. Otto, SIAM J. Math. Anal, 29(1):1--17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure

    A cell-centred finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension

    Full text link
    Finite volume methods for problems involving second order operators with full diffusion matrix can be used thanks to the definition of a discrete gradient for piecewise constant functions on unstructured meshes satisfying an orthogonality condition. This discrete gradient is shown to satisfy a strong convergence property on the interpolation of regular functions, and a weak one on functions bounded for a discrete H1H^1 norm. To highlight the importance of both properties, the convergence of the finite volume scheme on a homogeneous Dirichlet problem with full diffusion matrix is proven, and an error estimate is provided. Numerical tests show the actual accuracy of the method

    On the convexity of injectivity domains on nonfocal manifolds

    Get PDF
    Given a smooth nonfocal compact Riemannian manifold, we show that the so-called Ma--Trudinger--Wang condition implies the convexity of injectivity domains. This improves a previous result by Loeper and Villani

    The gradient flow structure for incompressible immiscible two-phase flows in porous media

    Get PDF
    We show that the widely used model governing the motion of two incompressible immiscible fluids in a possibly heterogeneous porous medium has a formal gradient flow structure. More precisely, the fluid composition is governed by the gradient flow of some non-smooth energy. Starting from this energy together with a dissipation potential, we recover the celebrated Darcy-Muskat law and the capillary pressure law governing the flow thanks to the principle of least action. Our interpretation does not require the introduction of any algebraic transformation like, e.g., the global pressure or the Kirchhoff transform, and can be transposed to the case of more phases

    The gradient discretisation method for linear advection problems

    Get PDF
    We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped P1 conforming and non conforming finite element and on the hybrid finite volume method

    A unified analysis of elliptic problems with various boundary conditions and their approximation

    Full text link
    We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue--Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming, or not (that is, the approximation functions can belong to the energy space of the problem, or not), and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to other models, including flows in fractured medium, elasticity equations and diffusion equations on manifolds. A by-product of the analysis is an apparently novel result on the equivalence between general Poincar{\'e} inequalities and the surjectivity of the divergence operator in appropriate spaces

    A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods

    Full text link
    We investigate the connections between several recent methods for the discretization of anisotropic heterogeneous diffusion operators on general grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite Volume scheme and the Mixed Finite Volume scheme are in fact identical up to some slight generalizations. As a consequence, some of the mathematical results obtained for each of the method (such as convergence properties or error estimates) may be extended to the unified common framework. We then focus on the relationships between this unified method and nonconforming Finite Element schemes or Mixed Finite Element schemes, obtaining as a by-product an explicit lifting operator close to the ones used in some theoretical studies of the Mimetic Finite Difference scheme. We also show that for isotropic operators, on particular meshes such as triangular meshes with acute angles, the unified method boils down to the well-known efficient two-point flux Finite Volume scheme
    corecore