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THE GRADIENT FLOW STRUCTURE FOR INCOMPRESSIBLE

IMMISCIBLE TWO-PHASE FLOWS IN POROUS MEDIA

CLÉMENT CANCÈS, THOMAS O. GALLOUËT, AND LÉONARD MONSAINGEON

Abstract. We show that the widely used model governing the motion of two
incompressible immiscible fluids in a possibly heterogeneous porous medium
has a formal gradient flow structure. More precisely, the fluid composition is
governed by the gradient flow of some non-smooth energy. Starting from this
energy together with a dissipation potential, we recover the celebrated Darcy-
Muskat law and the capillary pressure law governing the flow thanks to the
principle of least action. Our interpretation does not require the introduction
of any algebraic transformation like, e.g., the global pressure or the Kirchhoff
transform, and can be transposed to the case of more phases.

1. Introduction

1.1. General motivations. The models for multiphase porous media flows have
been widely studied in the last decades since they are of great interest in several
fields of applications, like e.g. oil-engineering, carbon dioxide sequestration, or
nuclear waste repository management. We refer to the monographs [5, 6] for an
extensive discussion on the derivation of models for porous media flows, and to
[4, 11, 3, 13] for numerical and mathematical studies.

More recently, F. Otto showed in his seminal work [18] that the so-called porous
medium equation:

∂tρ−∆ρm = 0 for (x, t) ∈ R
N × R+ and m > 1,

which is a very simplified model corresponding to the case of an isentropic gas
flowing within a porous medium, can be reinterpreted in a physically relevant way
as the gradient flow of the free energy with respect to some Wasserstein metric
in the space of Borel probability measures. Extensions to more general degener-
ate parabolic equations were then proposed for example in [1, 16]. See also for
instance [7] or [15] for the interpretation of some dissipative systems as gradient
flows in Wasserstein metrics.

In this note, we will focus on the model governing the motion of an incompressible
immiscible two-phase flow in a possibly heterogeneous porous medium, that will
appear in the sequel as (3) and (11)–(13). This model is relevant for instance for
describing the flow of oil and water, whence the subscripts o and w appearing in
the sequel of this note, within a rock that is possibly made of several rock-types.
Our goal is to show that, at least formally, this model can be reinterpreted as the
gradient flow of some singular energy. This will motivate the use of structure-
preserving numerical methods inspired from [9] to this model in the future.

Our approach is inspired from the one of A. Mielke [17] and, more closely, to
the one of M. A. Peletier [19]. The basic recipe for variational modeling is recalled
in §1.2, then its ingredients are identified in §2. This approach is purely formal,
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but it can be made rigorous under some unphysical strict positivity assumption on
the phase mobilities ηo, ηw defined below. We will remain sloppy about regularity
issues all along this note.

1.2. The recipe of getting formal variational models. Here we recall very
briefly the main ingredients needed for defining a formal gradient flow.

i. The state space M is the set where the solution of the gradient flow can evolve.
ii. At a point s ∈ M, the tangent space TsM, to whom would belong ∂ts, is

identified in a non-unique way with a so-called process space Zs (that might
depend on s). More precisely, we assume that for each s ∈ M there exists an
onto linear application P(s) : Zs → TsM.

iii. The energy functional E : M → R ∪ {+∞} admits a (local) sub-differential
∂sE(s) ⊂ (TsM)

∗
at s ∈ M.

iv. The dissipation potential D is such that, for all s ∈ M and all V ∈ Zs, one
has D(s;V) ≥ 0. It is supposed to be convex and coercive w.r.t. to its second
variable.

v. The initial data s0 belongs to M.

All these ingredient being defined, we obtain from the principle of least action that
s : R+ → M is the gradient flow of the energy E for the dissipation D if

(1a) ∂ts = P(s)V

where

(1b) V ∈ argmin
V̂∈Zs

(
max

h∈∂sE(s)

(
D
(
s(t); V̂(t)

)
+
〈
h , P(s)V̂

〉
(TsM)∗,TsM

))
.

The formula (1b) means that a gradient flow is lazy and smart: the motion aims
to minimize the dissipation while maximizing the decay of the energy. We refer
to [17, 19] for additional material on such a formal modeling and to [2] for an
extensive (and rigorous) discussion on gradient flows in metric spaces.

2. Variational modeling for two-phase flows in porous media

2.1. State space and process space. Let Ω be an open subset of RN representing
a (possibly heterogeneous) porous medium, let φ : Ω → (0, 1) be a measurable
function (called porosity) such that φ ≤ φ(x) ≤ φ for a.e. x ∈ Ω for some constants

φ, φ ∈ (0, 1), and let so, sw : Ω → [0, 1) be two measurable functions (so-called

residual saturations) such that so(x) + sw(x) < 1 for a.e. x ∈ Ω. In what follows,
we denote by

so(x) = 1− sw(x), sw(x) = 1− so(x), for a.e. x ∈ Ω.

For almost all x ∈ Ω, we denote by

∆x =
{
s = (so, sw) ∈ R

2
∣∣∣ so + sw = 1 with sα(x) ≤ sα ≤ sα(x) for α ∈ {o, w}

}
.

Let s0 = (s0o, s
0
w) be a given initial saturation profile, we denote by mα (α ∈

{o, w}) the volume occupied by the phase α in the porous medium, i.e.,

mo =

∫

Ω

φ(x)s0o(x)dx, and mw =

∫

Ω

φ(x)s0w(x)dx.
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For simplicity, we restrict our attention to the case where the volume of each phase
is preserved: no source term and no-flux boundary conditions (otherwise, non-
autonomous gradient flows should be considered). Hence the saturation profile lies
at each time in the so-called state space M, defined by

M =

{
s = (so, sw)

∣∣∣∣ sα : Ω → R+ with

∫

Ω

φ(x)sα(x)dx = mα for α ∈ {o, w}

}
.

Let us now describe the processes that allow to transform the saturation profile.
We denote by

Zs =
{
V = (vo,vw)

∣∣∣ vα : Ω → R
N with vα · n = 0 on ∂Ω

}

the process space of the admissible processes for modifying a saturation profile
s ∈ M. The identification between V = (vo,vm) ∈ Zs and ṡ = (ṡo, ṡw) ∈ TsM is
made through the onto operator P(s) : Zs → TsM defined by

(2) P(s)V =

(
−
1

φ
∇ · vo ; −

1

φ
∇ · vw

)
, ∀V ∈ Zs.

Since ∂ts ∈ TsM, the relation (2) yields the existence of some phase filtration
speeds (vo,vw) ∈ Zs such that the following continuity equations hold:

(3) φ∂tsα +∇ · vα = 0, α ∈ {o, w}.

The relation (3) must be understood as the local volume conservation of each phase
α ∈ {o, w}. Finally, the duality bracket 〈· , ·〉(TsM)∗,TsM is given by

〈h, ṡ〉(TsM)∗,TsM =
∑

α∈{o,w}

∫

Ω

φhαṡα

=−
∑

α∈{o,w}

∫

Ω

hα∇ · vα =
∑

α∈{o,w}

∫

Ω

∇hα · vα.

2.2. About the energy. For a.e. x ∈ Ω, we assume π(·,x) : [so(x), so(x)] → R

to be a maximal monotone graph whose restriction π|(s
o
,so)

(·,x) to the open interval

(so(x), so(x)) is an increasing (single-valued) function belonging to L1(so(x), so(x)).
In particular, π−1(·,x) : R → [so(x), so(x)] is a single valued function.

We denote by Π : R×Ω → R∪{+∞} the (strictly convex w.r.t. its first variable)
function defined by

Π(so,x) =





∫ so

σ(x)

π(a,x)da− (ρo − ρw)sgz if so ∈ [so(x), so(x)],

+∞ otherwise,

where, denoting by ez the downward unit normal vector of RN , we have set z =
x ·ez, and where g and ρα denote the gravity constant and the density of the phase
α respectively, and where σ is such that x 7→ π(σ(x),x)− (ρo − ρw)gz is constant.
Since π|(s

o
,so)

(·,x) ∈ L1(so(x), so(x)), we get that Π(so(x),x) and Π(so(x),x) are

finite for a.e. x ∈ Ω.
The volume energy function E : R2 × Ω → R ∪ {+∞} is defined by

(4) E(s,x) =

{
Π(so,x) if s = (so, sw) ∈ ∆x,

+∞ otherwise.
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The function E(·,x) is convex and finite on ∆x for a.e. x ∈ Ω. Its sub-differential
is given by

∂sE(s,x) =

{{
(ho, hw) ∈ R

2
∣∣∣ ho − hw + (ρo − ρw)gz ∈ π(so,x)

}
if s ∈ ∆x,

∅ otherwise.

Finally, we can define the so-called global energy E : M → R ∪ {+∞} by

(5) E(s) =

∫

Ω

φ(x)E(s(x),x)dx, ∀s = (so, sw) ∈ M.

The saturation profile s ∈ M is of finite energy E(s) < ∞ if and only if s(x) ∈ ∆x

for a.e. x ∈ Ω. For s ∈ M with finite energy one can check that the local sub-
differential ∂sE(s) of E at s is given by

(6) ∂sE(s) =
{
h = (ho, hw) : Ω → R

2 s.t.

ho − hw + (ρo − ρw)gz ∈ π(so,x) for a.e. x ∈ Ω
}
.

2.3. About the dissipation. The permeability tensor field Λ ∈ L∞(Ω;RN×N) is
assumed to be such that Λ(x) is a symmetric and positive matrix for a.e. x ∈ Ω.
Moreover, we assume that there exist λ⋆, λ

⋆ ∈ R
∗
+ such that

λ⋆|u|
2 ≤ Λ(x)u · u ≤ λ⋆|u|2, for all u ∈ R

N and a.e. x ∈ Ω.

This ensures that Λ(x) is invertible for a.e. x ∈ Ω. Its inverse is denoted by
Λ−1(x).

We also need the two Carathéodory functions ηo, ηw : R × Ω → R+ — the
so-called phase mobilities — such that ηα(·,x) are Lipschitz continuous and non-
decreasing on R+ for a.e. x ∈ Ω and α ∈ {o, w}. Moreover, we assume that
ηα(s,x) = 0 if s ≤ sα(x) and that ηα(s,x) > 0 if s > sα(x).

Given s = (so, sw) ∈ M and V = (vo,vw) ∈ Zs, we define the dissipation
potential D by

D(s,V) =
1

2

∑

α∈{o,w}

∫

Ω

Λ−1
vα · vα

ηα(sα)
dx, ∀s ∈ M, ∀V ∈ Zs.

It is easy to check that dissipation is finite, i.e., D(s,V) < ∞, iff vα = 0 a.e. on {x ∈
Ω | sα(x) ≤ sα(x)}.

2.4. Principle of least action and resulting equations. Let us consider the
gradient flow governed by the energy E , the continuity equation (3), and the dissipa-
tionD. Let s ∈ M be a finite energy saturation profile, then because of the principle
of least action (1b) and of the definition (2) of the operator P(s) : Zs → TsM, the
process V = (vo,vw) ∈ Zs and the hydrostatic phase pressures h = (ho, hw) must
be chosen so that (V,h) is the min−max saddle-point of the functional

(7) (V̂, ĥ) 7→ D(s, V̂)−
∑

α∈{o,w}

∫

Ω

ĥα∇ · v̂αdx.
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One can first fix ĥ ∈ ∂sE(s) and minimize w.r.t. V. This provides
(8)

argmin
V̂∈Z


D(s, V̂)−

∑

α∈{o,w}

∫

Ω

ĥα∇ · v̂αdx


 =

(
−ηo(so)Λ∇ĥo,−ηw(sw)Λ∇ĥw

)
.

Injecting this expression in (7) and maximizing w.r.t. ĥ ∈ ∂sE(s), that is minimiz-
ing

(9) h = argmin
ĥ∈∂sE(s)

(
1

2

∫

Ω

ηα(sα)Λ∇ĥα · ∇ĥα

)

among all elements ĥ in the subdifferential ∂sE(s), yields

(10) −∇ ·
(
vo + vw

)
= 0, vα = −ηα(sα)Λ∇hα.

In (10) the first condition follows from the constraint ĥ ∈ ∂sE(s) in (9), and the
second one from (8).

Define the phase pressures p = (po, pw) by pα(x) = hα(x)+ραgz, for a.e. x ∈ Ω
and α ∈ {o, w}, then we recover the classical Darcy-Muskat law :

(11) vα = −ηα(sα)Λ∇ (pα − ραgz) , α ∈ {o, w}.

Moreover, it follows from (6) that the following capillary pressure relation holds:

(12) po(x)− pw(x) ∈ π(so(x),x) a.e. in Ω.

We recover here the multivalued capillary pressure relation proposed in [8, 10].
Combining (3) and (10) easily gives ∂t(so + sw) = 0, so that the condition

(13) so + sw = 1 a.e. in Ω,

is preserved along time and the whole pore volume remains saturated by the two
fluids.

Gathering (3), (11), (12) and (13) gives the usual system of equations governing
immiscible incompressible two-phase flows in porous media [5, 11, 3, 12, 10].

Remark 1. By similarity with the classical Wasserstein distance used in optimal
mass transport [18] one could here endow the tangent space TsM at s ∈ M with a

weighted Ḣ−1-scalar product

(
ṡ1, ṡ2

)
TsM

=
∑

α∈{o,w}

∫

Ω

ηα(sα)Λ∇h1,α ·∇h2,αdx,

where, for i ∈ {1, 2} and α ∈ {o, w}, we have set ṡi = (ṡi,o, ṡi,w) and where hi,α

solves

−∇ · (ηα(sα)Λ∇hi,α) = ṡi,α in Ω, ηα(sα)Λ∇hi,α · n = 0 on ∂Ω.

Under some conditions on the functions ηα (see [14]), this should allow us to con-
sider M as a metric space endowed with the corresponding distance, but E is not
locally λ-convex for this Riemannian structure. The minimization (9) then consists
in the selection of the subgradient with minimal norm.
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edition, 2008.

[3] S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov. Boundary value problems in me-

chanics of nonhomogeneous fluids, volume 22 of Studies in Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam, 1990. Translated from the Russian.

[4] K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier Applied Science Publishers,
Londres, 1979.

[5] J. Bear. Dynamic of Fluids in Porous Media. American Elsevier, New York, 1972.
[6] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in porous media,

volume 4. Springer, 1990.
[7] A. Blanchet. A gradient flow approach to the Keller-Segel systems. RIMS Kokyuroku’s lecture

notes, 2014.
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