428 research outputs found

    An Alternative to Matter Localization in the "Brane World": An Early Proposal and its Later Improvements

    Full text link
    Here we place the Latex typeset of the paper M. Pavsic, Phys. Lett. A116 (1986) 1-5. In the paper we presented the picture that our spacetime is a 3-brane moving in a higher dimensional space. The dynamical equations were derived from the action which is just that for the usual Dirac-Nambu-Goto pp-brane. We also considered the case where not only one, but many branes of various dimensionalities are present, and showed that their intersections with the 3-brane manifest as matter in 4-dimensional spacetime. We considered a particular case, where the intersections behaved as point particles, and found out that they follow the geodesics on the 3-brane worldsheet (identified with our spacetime). In a series of subsequent papers the original idea has been further improved and developped. This is discussed in a note at the end, where it is also pointed out that such a model resolves the problem of massive matter confinement on the brane, recently discussed by Rubakov et al. and Mueck et al.Comment: 11 page

    TADA – a Machine Learning Tool for Functional Annotation based Prioritisation of Putative Pathogenic CNVs

    Get PDF
    Few methods have been developed to investigate copy number variants (CNVs) based on their predicted pathogenicity. We introduce TADA, a method to prioritise pathogenic CNVs through assisted manual filtering and automated classification, based on an extensive catalogue of functional annotation supported by rigourous enrichment analysis. We demonstrate that our classifiers are able to accurately predict pathogenic CNVs, outperforming current alternative methods, and produce a well-calibrated pathogenicity score. Our results suggest that functional annotation-based prioritisation of pathogenic CNVs is a promising approach to support clinical diagnostics and to further the understanding of mechanisms controlling the disease impact of larger genomic alterations

    Standardization of Cu2O nanocubes synthesis: Role of precipitation process parameters on physico-chemical and photo-electrocatalytic properties

    Get PDF
    A facile, reproducible, and scalable wet precipitation method was optimized to synthetise Cu2O nanocubes with tuneable morphology and photocatalytic properties. The synthesis process was standardized by controlling the flow rate of addition of the reducing agent. This allowed to control the Cu2O crystallites size, which decreased from 60 nm to 30 nm by increasing the L-ascorbic acid flow rate, while maintaining a high yield (ranging from 87% to 97%) and reproducibility, as confirmed by X-Ray diffraction, scanning electron microscopy, and X-Ray photoelectron spectroscopy analyses. Moreover, the role of the synthesis conditions on the Cu2O nanocubes specific surface area and electrochemical surface area (ECSA) were investigated and correlated to their photo-electrocatalytic activity for the reduction of water and CO2 under ambient conditions, on electrodes made by air brushing. Decreasing of the Cu2O crystallites size enhanced the photo-electrocatalytic activity most probably due to a superior surface area, ECSA and an optimum valence and conduction band positions, which improves the charge transfer properties of the photocatalyst. The here proposed methodology and outcomes are very promising for the scale-up of the precipitation synthesis, not only of Cu2O but also of other nanostructured metal oxides to be exploited as photo-catalysts for environmental and energy applications

    The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine

    Get PDF
    The purpose of this article is to provide an overview on the role of CT scan and MRI according to selected guidelines by the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA). ESC and ACC/AHA guidelines were systematically reviewed for recommendations to CT and MRI use in specific cardiovascular (CV) clinical categories. All recommendations were collected in a dataset, including the class of recommendation, the level of evidence (LOE), the specific imaging technique, the clinical purpose of the recommendation and the recommending Society. Among the 43 included guidelines (ESC: n = 18, ACC/AHA: n = 25), 26 (60.4%) contained recommendations for CT scan or MRI (146 recommendations: 62 for CT and 84 for MRI). Class of recommendation IIa (32.9%) was the most represented, followed by I (28.1%), IIb (24%) and III (11.9%). MRI recommendations more frequently being of higher class (I: 36.9%, IIa: 29.8%, IIb: 21.4%, III: 11.9%) as compared to CT (I: 16.1%, IIa: 37.1%, IIb: 27.4%, III: 19.4%). Most of recommendation (55.5%) were based on expert opinion (LOE C). The use of cardiac CT and cardiac MR in the risk assessment, diagnosis, therapeutic and procedural planning is in continuous development, driven by an increasing need to evolve toward an imaging-guided precision medicine, combined with cost-effectiveness and healthcare sustainability. These developments must be accompanied by an increased availability of high-performance scanners in healthcare facilities and should emphasize the need of increasing the number of radiologists fully trained in cardiac imaging

    Biodegradable polymeric micro/Nano-structures with intrinsic antifouling/antimicrobial properties: Relevance in damaged skin and other biomedical applications

    Get PDF
    Bacterial colonization ofimplanted biomedical devicesis themain cause of healthcare-associated infections, estimated to be 8.8 million per year in Europe. Many infections originate from damaged skin, which lets microorganisms exploit injuries and surgical accesses as passageways to reach the implant site and inner organs. Therefore, an effective treatment of skin damage is highly desirable for the success of many biomaterial-related surgical procedures. Due to gained resistance to antibiotics, new antibacterial treatments are becoming vital to control nosocomial infections arising as surgical and post-surgical complications. Surface coatings can avoid biofouling and bacterial colonization thanks to biomaterial inherent properties (e.g., super hydrophobicity), specifically without using drugs, which may cause bacterial resistance. The focus of this review is to highlight the emerging role of degradable polymeric micro- and nano-structures that show intrinsic antifouling and antimicrobial properties, with a special outlook towards biomedical applications dealing with skin and skin damage. The intrinsic properties owned by the biomaterials encompass three main categories: (1) physical-mechanical, (2) chemical, and (3) electrostatic. Clinical relevance in ear prostheses and breast implants is reported. Collecting and discussing the updated outcomes in this field would help the development of better performing biomaterial-based antimicrobial strategies, which are useful to prevent infections

    Women and alcohol. A survey in the city of Barletta

    Get PDF
    Introduction. The aim of this survey was to evaluate the qualitative and quantitative relationship among women from Barletta - a national renowned wine center - and their alcohol consumption. Methods. The AUDIT questionnaire was used to assess the prevalence of alcohol hazardous consumption among women. Questionnaires were submitted from March to November 2012. The sample was composed of 150 women older than 13 years of age, selected by stratified sampling based on age group. Results. 107 women were enrolled with a total response rate of 71.3%. 62% of enrolled women consumes alcoholic beverages with a frequency that goes from 2-3 times a week to less than once a month, usually 1 or 2 alcoholic units. The binge-drinking was reported by 5% of women. Women who reported alcohol-related risk behaviors were less than 3%, they were single and between 18 and 60 years old and such behaviors occur less than once a month. The final score, calculated for all the women from their questionnaire answers, was not higher than 8, with an average score of 1.3 (SD = 1.5; range: 0 to 2.8). The comparison of the average scores of the three age groups showed a statistically sig- nificant difference (F = 5.8, p = 0.004). Discussion. Data from literature showed a change in the habits of alcohol intake by the global, European and also Italian population. These changes also affect and involve female. Our study found a quite moderate alcohol consumption among women from Barletta, with only 1% who consumes 3 or more alcohol units and drink more than four times a week and 3% who had hazardous behavior related to their alcohol consumption. Statistical significance was found for the age and the lack of stable relationships. The analysis of characteristics of at risk women (old age and single-status) suggests that much attention should be paid to them and they should represent the main subject of future social interventions to prevent alcohol related problems in the city of Barletta

    Electrospun ZnO/Poly(Vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering

    Get PDF
    Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against inflammation and microbial aggression. In this study, we investigated the potential of nanocomposites of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] incorporating zinc oxide (ZnO), in the form of electrospun fiber meshes for lung tissue engineering. We focused on their anti-inflammatory, antimicrobial, and mechanoelectrical character according to different fiber mesh textures (i.e., collected at 500 and 4000 rpm) and compositions: (0/100) and (20/80) w/w% ZnO/P(VDF-TrFE), plain and composite, respectively. The scaffolds were characterized in terms of morphological, physicochemical, mechanical, and piezoelectric properties, as well as biological response of A549 alveolar epithelial cells in presence of lung-infecting bacteria. By virtue of ZnO, the composite scaffolds showed a strong anti-inflammatory response in A549 cells, as demonstrated by a significant decrease of interleukin (IL) IL-1a, IL-6, and IL-8 expression in 6 h. In all the scaffold types, but remarkably in the aligned composite ones, transforming growth factor b (TGF-b) and the antimicrobial peptide human b defensin-2 (HBD-2) were significantly increased. The ZnO/P(VDF-TrFE) electrospun fiber meshes hindered the biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa and the cell/scaffold constructs were able to impede S. aureus adhesion and S. aureus and P. aeruginosa invasiveness, independent of the scaffold type. The data obtained suggested that the composite scaffolds showed potential for tunable mechanical properties, in the range of alveolar walls and fibers. Finally, we also showed good piezoelectricity, which is a feature found in elastic and collagen fibers, the main extracellular matrix molecules in lungs. The combination of all these properties makes ZnO/P(VDF-TrFE) fiber meshes promising for lung repair and regeneration

    Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae

    Get PDF
    Esters are essential for the flavor and aroma of fermented products, and are mainly produced by alcohol acyl transferases (AATs). A recently discovered AAT family named Eat (Ethanol acetyltransferase) contributes to ethyl acetate synthesis in yeast. However, its effect on the synthesis of other esters is unknown. In this study, the role of the Eat family in ester synthesis was compared to that of other Saccharomyces cerevisiae AATs (Atf1p, Atf2p, Eht1p, and Eeb1p) in silico and in vivo. A genomic study in a collection of industrial S. cerevisiae strains showed that variation of the primary sequence of the AATs did not correlate with ester production. Fifteen members of the EAT family from nine yeast species were overexpressed in S. cerevisiae CEN.PK2-1D and were able to increase the production of acetate and propanoate esters. The role of Eat1p was then studied in more detail in S. cerevisiae CEN.PK2-1D by deleting EAT1 in various combinations with other known S. cerevisiae AATs. Between 6 and 11 esters were produced under three cultivation conditions. Contrary to our expectations, a strain where all known AATs were disrupted could still produce, e.g., ethyl acetate and isoamyl acetate. This study has expanded our understanding of ester synthesis in yeast but also showed that some unknown ester-producing mechanisms still exist
    • …
    corecore