14,484 research outputs found

    Double dynamical regime of confined water

    Full text link
    The Van Hove self correlation function of water confined in a silica pore is calculated from Molecular Dynamics trajectories upon supercooling. At long time in the α\alpha relaxation region we found that the behaviour of the real space time dependent correlators can be decomposed in a very slow, almost frozen, dynamics due to the bound water close to the substrate and a faster dynamics of the free water which resides far from the confining surface. For free water we confirm the evidences of an approach to a crossover mode coupling transition, previously found in Q space. In the short time region we found that the two dynamical regimes are overimposed and cannot be distinguished. This shows that the interplay between the slower and the faster dynamics emerges in going from early times to the α\alpha relaxation region, where a layer analysis of the dynamical properties can be performed.Comment: 6 pages with 9 figures. RevTeX. Accepted for pulbication in J. Phys. Cond. Mat

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    The relaxation dynamics of a simple glass former confined in a pore

    Full text link
    We use molecular dynamics computer simulations to investigate the relaxation dynamics of a binary Lennard-Jones liquid confined in a narrow pore. We find that the average dynamics is strongly influenced by the confinement in that time correlation functions are much more stretched than in the bulk. By investigating the dynamics of the particles as a function of their distance from the wall, we can show that this stretching is due to a strong dependence of the relaxation time on this distance, i.e. that the dynamics is spatially very heterogeneous. In particular we find that the typical relaxation time of the particles close to the wall is orders of magnitude larger than the one of particles in the center of the pore.Comment: 9 pages of Latex, 4 figure

    The effects of a comptonizing corona on the appearance of the reflection components in accreting black hole spectra

    Full text link
    We discuss the effects of a comptonizing corona on the appearance of the reflection components, and in particular of the reflection hump, in the X-rays spectra of accreting black holes. Indeed, in the framework of a thermal corona model, we expect that part (or even all, depending on the coronal covering factor) of the reflection features should cross the hot plasma, and thus suffer Compton scattering, before being observed. We have studied in detail the dependence of these effects on the physical (i.e. temperature and optical depth) and geometrical (i.e. inclination angle) parameters of the corona, concentrating on the slab geometry . Due to the smoothing and shifting towards high energies of the comptonized reflection hump, the main effects on the emerging spectra appear above 100 keV. We have also investigated the importance of such effects on the interpretation of the results obtained with the standard fitting procedures. We found that fitting Comptonization models, taking into account comptonized reflection, by the usual cut-off power law + uncomptonized reflection model, may lead to an underestimation of the reflection normalization and an overestimation of the high energy cut-off. We discuss and illustrate the importance of these effects by analysing recent observational results as those of the galaxy NGC 4258. We also find that the comptonizing corona can produce and/or emphasize correlations between the reflection features characteristics (like the iron line equivalent width or the covering fraction) and the X-ray spectral index similar to those recently reported in the literature. We also underline the importance of these effects when dealing with accurate spectral fitting of the X-ray background.Comment: 11 pages, 14 figures accepted for publication in MNRAS. Version printable on US 8.5x11 pape

    High temperature fatigue tests and crack growth in 40CrMoV13.9 notched components

    Get PDF
    The present paper addresses experimentally the high temperature fatigue of 40CrMoV13.9 steel and the effect of surface roughness on fatigue strength and crack initiation. The 40CrMoV13.9 steel is widely used in different engineering high temperature applications among which hot- rolling of metals, where, in order to assure a constant temperature, the rolls are provided with cooling channels. These are the most stressed zone of the rolls where cracks systematically initiate. In order to completely characterize the high temperature behaviour of this steel, firstly uniaxial-tension load controlled fatigue tests have been conducted at different temperatures up to 650°C. Two geometries are considered: plain specimens and plates weakened by symmetric V-notches. Subsequently, with the aim to investigate the influence of the cooling channels roughness on the high temperature behaviour and the cracks initiation, uniaxial-tension load controlled fatigue tests have been conducted on plate with central hole at the service temperature of 650°C varying the surface roughness. After a brief review of the recent literature, the experimental procedure is described in detail and the new data from un-notched and notched specimens are summarized in terms of stress range, at the considered temperatures. Finally, fatigue data from un-notched and notched specimens are re-analysed by means of the mean value of the Strain Energy Density (SED) approach extended at high temperature

    Irredundant Triangular Decomposition

    Full text link
    Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set WW defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success

    Method for speciation of organoarsenic in mussels by liquid chromatography coupled to electrospray ionization and QTRAP tandem mass spectrometry.

    Get PDF
    Arsenic toxicity to humans critically depends on the chemical form of the arsenic. The Expert Committee of the Food and Agriculture Organization and the World Health Organization defined a tolerable intake only for inorganic arsenic, although the toxicity of some organoarsenic compounds is known. Arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) are abundant in shellfish. We present a fast and reliable method for identification of the type of organic arsenic in mussels by using liquid chromatography coupled to electrospray ionization tandem mass spectrometry on triple quadrupole with parallel determination of total arsenic by atomic absorption spectrophotometry. The method was validated by evaluating mean recoveries, repeatability, specificity, limits of quantification, and limits of detection that produced satisfactory results. The method was used to carry out the first survey of the concentrations of AsB, AsC, MMA, and DMA in seafood from southern Italy. Total As concentrations ranged from 1.38 to 12.79 mg/kg. AsB and DMA were detected in all samples (AsB: 0.72 to 10.36 mg/kg; DMA: 0.28 to 1.08 mg/kg), and concentrations of AsC and MMA ranged from 0.20 to 1.53 mg/kg. This method allowed us to rapidly and inexpensively identify arsenic types in fishery products and would be suitable for routine detection of organoarsenic compounds in molluscs

    Thermodynamic behaviour and structural properties of an aqueous sodium chloride solution upon supercooling

    Full text link
    We present the results of a molecular dynamics simulation study of thermodynamic and structural properties upon supercooling of a low concentration sodium chloride solution in TIP4P water and the comparison with the corresponding bulk quantities. We study the isotherms and the isochores for both the aqueous solution and bulk water. The comparison of the phase diagrams shows that thermodynamic properties of the solution are not merely shifted with respect to the bulk. Moreover, from the analysis of the thermodynamic curves, both the spinodal line and the temperatures of maximum density curve can be calculated. The spinodal line appears not to be influenced by the presence of ions at the chosen concentration, while the temperatures of maximum density curve displays both a mild shift in temperature and a shape modification with respect to bulk. Signatures of the presence of a liquid-liquid critical point are found in the aqueous solution. By analysing the water-ion radial distribution functions of the aqueous solution we observe that upon changing density, structural modifications appear close to the spinodal. For low temperatures additional modifications appear also for densities close to that corresponding to a low density configurational energy minimum.Comment: 10 pages, 13 figures, 2 tables. To be published in J. Chem. Phy

    Gravitational lens optical scalars in terms of energy-momentum distributions

    Full text link
    This is a general work on gravitational lensing. We present new expressions for the optical scalars and the deflection angle in terms of the energy-momentum tensor components of matter distributions. Our work generalizes standard references in the literature where normally stringent assumptions are made on the sources. The new expressions are manifestly gauge invariant, since they are presented in terms of curvature components. We also present a method of approximation for solving the lens equations, that can be applied to any order.Comment: 17 pages, 2 figures. Titled changed. Small improvements. References added. Final version published in Phys.Rev.
    • …
    corecore