28 research outputs found

    Motor skill control and learning in aiming sports: a psychophysiological account of the neural efficiency and quiet eye phenomena

    Get PDF
    This thesis aimed to increase our understanding of the psychophysiological correlates of superior motor performance in target sports by providing an integrated account of the models of neural efficiency (Hatfield & Hillman, 2001) and quiet eye (Vickers, 2007). To this end, I conducted a series of four studies adopting a multimeasure approach to record brain activity- using electroencephalography (EEG)- eye movements- using electrooculography (EOG)- and movement kinematics- using motion sensors- in a golf putting task. The findings of these studies led me to propose an integrated neural efficiency-quiet eye model arguing that superior motor performance is achieved through refinement of cortical activity - reflected in regional gating of alpha oscillations- whereby movement-related information processing is promoted and at the same time insulated from other psychomotor processes that are unrelated with,. or detrimental to, fine motor control. The findings of my studies indicate that visual perception is inhibited.during the final stages of preparation for action, and suggest that the quiet eye phenomenon reflects a general psychomotor quiescence that facilitates clean and smooth movements. This thesis demonstrates the utility of psychophysiology in human movement science and builds some methodological and conceptual foundations for interdisciplinary research on the correlates of superior motor performance

    Lower left temporal-frontal connectivity characterizes expert and accurate performance: High-alpha T7-Fz connectivity as a marker of conscious processing during movement

    Get PDF
    The Theory of Reinvestment argues that conscious processing can impair motor performance. The present study tested the utility of left temporal-frontal cortical connectivity as a neurophysiological marker of movement specific conscious processing. Expert and novice golfers completed putts while temporal-frontal connectivity was computed using high alpha Inter Site Phase Clustering (ISPC) and then analyzed as a function of experience (experts versus novices), performance (holed versus missed putts), and pressure (low versus high). Existing evidence shows that left temporal to frontal connectivity is related to dispositional conscious processing and is sensitive to the amount of declarative knowledge acquired during learning. We found that T7-Fz ISPC, but not T8-Fz ISPC, was lower in experts than novices, and lower when putts were holed than missed. Accordingly, our findings provide additional evidence that communication between verbal/language and motor areas of the brain during preparation for action and its execution is associated with poor motor performance. Our findings validate high-alpha left temporal-frontal connectivity as a neurophysiological correlate of movement specific conscious processin

    Don’t look, don’t think, just do it! Towards an understanding of alpha gating in a discrete aiming task

    Get PDF
    © 2018 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research Prior to and during movement, oscillatory alpha activity gates cognitive resources toward motor areas of the cortex by inhibiting neuronal excitability in nonmotor areas. The present study examined the effect of manipulating target variability on this alpha gating phenomenon. Using a baseline-test-retention design, we measured EEG alpha power, performance accuracy, and task difficulty in 32 recreational golfers as they putted golf balls (20 per target) to one central target (baseline, retention) and four targets of different directions and extents (manipulation). For participants in the random group (n = 16), target location varied with each repetition in a random fashion, whereas for participants in the blocked group (n = 16), it was kept constant within blocks. Regional analyses revealed a focal pattern of lower central alpha and higher occipital and temporal alpha. This topography was specific to preparation for movement and was associated with performance: smallest performance errors were preceded by decreased central combined with increased occipital alpha. The random group performed worse than the blocked group and found the task more difficult. Importantly, left temporal alpha prior to movement onset was lower for the random group than the blocked group. No group differences were found at baseline or retention. Our study proved that alpha gating can be altered by manipulating intertrial variability and thereby demonstrated the utility of the alpha gating model. Our findings underscore the importance of inhibiting occipital and left temporal areas when performing movements and provide further evidence that alpha gating reflects neural efficiency during motor tasks

    Shooting under cardiovascular load: Electroencephalographic activity in preparation for biathlon shooting

    Get PDF
    AbstractThis study explored the influence of sub-maximal cardiovascular load on electroencephalographic (EEG) activity preceding biathlon shooting. Frontal-midline theta and alpha power were examined to assess monitoring processes and cortical inhibition, respectively. Thirteen experienced biathletes (mean age: 17years; 5 males, 8 females) fired sets of five consecutive shots from the standing position at a 50-meter-distant target, under two fixed-order conditions: (i) at rest and (ii) immediately after 3-minute exercise on a bicycle ergometer at 90% of maximum heart rate (HR). HR and rate of physical exertion (RPE) were measured as manipulation checks. Shooting accuracy was assessed in target rings for each shot. Frontal-midline theta and alpha power were computed in the last second preceding each shot from average-reference 61-channel EEG and inter-individual differences were minimized through a median-scaled log transformation (Appendix). HR and RPE increased under cardiovascular load, however, shooting accuracy did not change. Pre-shooting frontal-midline theta power decreased, whereas alpha power increased over temporal and occipital – but not central – regions. These changes were larger for greater HR values. Additionally, higher frontal-midline theta, lower left-central alpha, and higher left-temporal alpha power were associated with more accurate shooting. These findings suggest that monitoring processes are beneficial to shooting performance but can be impaired by sub-maximal cardiovascular load. Greater inhibition of movement-irrelevant regions (temporal, occipital) and concomitant activation of movement-related regions (central) indicate that greater neural efficiency is beneficial to shooting performance and can allow trained biathletes to shoot accurately despite physically demanding conditions

    Preparation for action: Psychophysiological activity preceding a motor skill as a function of expertise, performance outcome, and psychological pressure

    Get PDF
    Knowledge of the psychophysiological responses that characterize optimal motor performance is required to inform biofeedback interventions. This experiment compared cortical, cardiac, muscular, and kinematic activity in 10 experts and 10 novices as they performed golf putts in low- and high-pressure conditions. Results revealed that in the final seconds preceding movement, experts displayed a greater reduction in heart rate and EEG theta, high-alpha, and beta power, when compared to novices. EEG high-alpha power also predicted success, with participants producing less high-alpha power in the seconds preceding putts that were holed compared to those that were missed. Increased pressure had little impact on psychophysiological activity. It was concluded that greater reductions in EEG high-alpha power during preparation for action reflect more resources being devoted to response programming, and could underlie successful accuracy-based performance

    Don’t look, don’t think, just do it! Toward an understanding of alpha gating in a discrete aiming task

    No full text
    © 2018 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research Prior to and during movement, oscillatory alpha activity gates cognitive resources toward motor areas of the cortex by inhibiting neuronal excitability in nonmotor areas. The present study examined the effect of manipulating target variability on this alpha gating phenomenon. Using a baseline-test-retention design, we measured EEG alpha power, performance accuracy, and task difficulty in 32 recreational golfers as they putted golf balls (20 per target) to one central target (baseline, retention) and four targets of different directions and extents (manipulation). For participants in the random group (n = 16), target location varied with each repetition in a random fashion, whereas for participants in the blocked group (n = 16), it was kept constant within blocks. Regional analyses revealed a focal pattern of lower central alpha and higher occipital and temporal alpha. This topography was specific to preparation for movement and was associated with performance: smallest performance errors were preceded by decreased central combined with increased occipital alpha. The random group performed worse than the blocked group and found the task more difficult. Importantly, left temporal alpha prior to movement onset was lower for the random group than the blocked group. No group differences were found at baseline or retention. Our study proved that alpha gating can be altered by manipulating intertrial variability and thereby demonstrated the utility of the alpha gating model. Our findings underscore the importance of inhibiting occipital and left temporal areas when performing movements and provide further evidence that alpha gating reflects neural efficiency during motor tasks
    corecore