69 research outputs found

    Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows

    Full text link
    We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body-force. This system admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations: the flow becomes 2D in the long-time limit. These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.Comment: To be published in Journal of Fluid Mechanic

    Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field

    Full text link
    We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-dependent perturbations are infinitesimal. We call this phenomenon "linear two-dimensionalization": the (possibly turbulent) 2D flow is an attractor of the dynamics, but it is not necessarily the only attractor of the system. Some 3D attractors may also exist and be attained for strong enough initial 3D perturbations. These results shed some light on the existence of a dissipation anomaly for magnetohydrodynamic flows subject to a strong external magnetic field.Comment: Journal of Fluid Mechanics, in pres

    Refraction of swell by surface currents

    Get PDF
    Using recordings of swell from pitch-and-roll buoys, we have reproduced the classic observations of long-range surface wave propagation originally made by Munk et al. (1963) using a triangular array of bottom pressure measurements. In the modern data, the direction of the incoming swell fluctuates by about ±10\pm 10^\circ on a time scale of one hour. But if the incoming direction is averaged over the duration of an event then, in contrast with the observations by Munk et al. (1963), the sources inferred by great-circle backtracking are most often in good agreement with the location of large storms on weather maps of the Southern Ocean. However there are a few puzzling failures of great-circle backtracking e.g., in one case, the direct great-circle route is blocked by the Tuamoto Islands and the inferred source falls on New Zealand. Mirages like this occur more frequently in the bottom-pressure observations of Munk et al. (1963), where several inferred sources fell on the Antarctic continent. Using spherical ray tracing we investigate the hypothesis that the refraction of waves by surface currents produces the mirages. With reconstructions of surface currents inferred from satellite altimetry, we show that mesoscale vorticity significantly deflects swell away from great-circle propagation so that the source and receiver are connected by a bundle of many rays, none of which precisely follow a great circle. The ±10\pm 10^\circ directional fluctuations at the receiver result from the arrival of wave packets that have travelled along the different rays within this multipath. The occasional failure of great-circle backtracking, and the associated mirages, probably results from partial topographic obstruction of the multipath, which biases the directional average at the receiver.Comment: Journal of Marine Research, in pres

    Wave turbulence description of interacting particles: Klein-Gordon model with a Mexican-hat potential

    Get PDF
    In field theory, particles are waves or excitations that propagate on the fundamental state. In experiments or cosmological models one typically wants to compute the out-of-equilibrium evolution of a given initial distribution of such waves. Wave Turbulence deals with out-of-equilibrium ensembles of weakly nonlinear waves, and is therefore well-suited to address this problem. As an example, we consider the complex Klein-Gordon equation with a Mexican-hat potential. This simple equation displays two kinds of excitations around the fundamental state: massive particles and massless Goldstone bosons. The former are waves with a nonzero frequency for vanishing wavenumber, whereas the latter obey an acoustic dispersion relation. Using wave turbulence theory, we derive wave kinetic equations that govern the coupled evolution of the spectra of massive and massless waves. We first consider the thermodynamic solutions to these equations and study the wave condensation transition, which is the classical equivalent of Bose-Einstein condensation. We then focus on nonlocal interactions in wavenumber space: we study the decay of an ensemble massive particles into massless ones. Under rather general conditions, these massless particles accumulate at low wavenumber. We study the dynamics of waves coexisting with such a strong condensate, and we compute rigorously a nonlocal Kolmogorov-Zakharov solution, where particles are transferred non-locally to the condensate, while energy cascades towards large wave numbers through local interactions. This nonlocal cascading state constitute the intermediate asymptotics between the initial distribution of waves and the thermodynamic state reached in the long-time limit

    Surface gravity waves propagating in a rotating frame: the Ekman-Stokes instability

    Full text link
    We report on an instability arising when surface gravity waves propagate in a rotating frame. The Stokes drift associated to the uniform wave field, together with global rotation, drives a mean flow in the form of a horizontally invariant Ekman-Stokes spiral. We show that the latter can be subject to an instability that triggers the appearance of an additional horizontally-structured cellular flow. We determine the instability threshold numerically, in terms of the Rossby number Ro associated to the Stokes drift of the waves and the Ekman number E. We confirm the numerical results through asymptotic expansions at both large and low Ekman number. At large E the instability reduces to that of a standard Ekman spiral driven by the wave-induced surface stress instead of a wind stress, while at low E the Stokes-drift profile crucially determines the shape of the unstable mode. In both limits the instability threshold asymptotes to an Ekman-number-independent critical Rossby number, which in both cases also corresponds to a critical Reynolds number associated to the Lagrangian base-flow velocity profile. Parameter values typical of ocean swell fall into the low-E unstable regime: the corresponding "anti-Stokes" flows are unstable, with possible consequences for particle dispersion and mixing

    Disentangling inertial waves from eddy turbulence in a forced rotating turbulence experiment

    Get PDF
    We present a spatio-temporal analysis of a statistically stationary rotating turbulence experiment, aiming to extract a signature of inertial waves, and to determine the scales and frequencies at which they can be detected. The analysis uses two-point spatial correlations of the temporal Fourier transform of velocity fields obtained from time-resolved stereoscopic particle image velocimetry measurements in the rotating frame. We quantify the degree of anisotropy of turbulence as a function of frequency and spatial scale. We show that this space-time-dependent anisotropy is well described by the dispersion relation of linear inertial waves at large scale, while smaller scales are dominated by the sweeping of the waves by fluid motion at larger scales. This sweeping effect is mostly due to the low-frequency quasi-two-dimensional component of the turbulent flow, a prominent feature of our experiment which is not accounted for by wave turbulence theory. These results question the relevance of this theory for rotating turbulence at the moderate Rossby numbers accessible in laboratory experiments, which are relevant to most geophysical and astrophysical flows

    Onset of three-dimensionality in rapidly rotating turbulent flows

    Full text link
    Turbulent flows driven by a vertically invariant body force were proven to become exactly two-dimensional above a critical rotation rate, using upper bound theory. This transition in dimensionality of a turbulent flow has key consequences for the energy dissipation rate. However, its location in parameter space is not provided by the bounding procedure. To determine this precise threshold between exactly 2D and partially 3D flows, we perform a linear stability analysis over a fully turbulent 2D base state. This requires integrating numerically a quasi-2D set of equations over thousands of turnover times, to accurately average the growth rate of the 3D perturbations over the statistics of the turbulent 2Dbase flow. We leverage the capabilities of modern GPUs to achieve this task, which allows us to investigate the parameter space up to Re = 10^5. At Reynolds numbers typical of 3D DNS and laboratory experiments, Re in [10^2, 5x10^3], the turbulent 2D flow becomes unstable to 3D motion through a centrifugal-type instability. However, at even higher Reynolds number another instability takes over. A candidate mechanism for the latter instability is the parametric excitation of inertial waves by the modulated 2D flow, a phenomenon that we illustrate with an oscillatory 2D Kolmogorov flow

    Dynamo saturation down to vanishing viscosity: strong-field and inertial scaling regimes

    Full text link
    We present analytical examples of fluid dynamos that saturate through the action of the Coriolis and inertial terms of the Navier-Stokes equation. The flow is driven by a body force and is subject to global rotation and uniform sweeping velocity. The model can be studied down to arbitrarily low viscosity and naturally leads to the strong-field scaling regime for the magnetic energy produced above threshold: the magnetic energy is proportional to the global rotation rate and independent of the viscosity. Depending on the relative orientations of global rotation and large-scale sweeping, the dynamo bifurcation is either supercritical or subcritical. In the supercritical case, the magnetic energy follows the scaling-law for supercritical strong-field dynamos predicted on dimensional grounds by Petrelis & Fauve (2001). In the subcritical case, the system jumps to a finite-amplitude dynamo branch. The magnetic energy obeys a magneto-geostrophic scaling-law (Roberts & Soward 1972), with a turbulent Elsasser number of the order of unity, where the magnetic diffusivity of the standard Elsasser number appears to be replaced by an eddy diffusivity. In the absence of global rotation, the dynamo bifurcation is subcritical and the saturated magnetic energy obeys the equipartition scaling regime. We consider both the vicinity of the dynamo threshold and the limit of large distance from threshold to put these various scaling behaviors on firm analytical ground
    corecore