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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52670223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-cea.archives-ouvertes.fr/cea-01366748


PHYSICAL REVIEW E 91, 043016 (2015)

Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment
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(Received 13 January 2015; published 23 April 2015)

We present a spatiotemporal analysis of a statistically stationary rotating-turbulence experiment, aiming to
extract a signature of inertial waves and to determine the scales and frequencies at which they can be detected.
The analysis uses two-point spatial correlations of the temporal Fourier transform of velocity fields obtained from
time-resolved stereoscopic particle image velocimetry measurements in the rotating frame. We quantify the degree
of anisotropy of turbulence as a function of frequency and spatial scale. We show that this space-time-dependent
anisotropy is well described by the dispersion relation of linear inertial waves at large scale, while smaller scales
are dominated by the sweeping of the waves by fluid motion at larger scales. This sweeping effect is mostly
due to the low-frequency quasi-two-dimensional component of the turbulent flow, a prominent feature of our
experiment that is not accounted for by wave-turbulence theory. These results question the relevance of this
theory for rotating turbulence at the moderate Rossby numbers accessible in laboratory experiments, which are
relevant to most geophysical and astrophysical flows.

DOI: 10.1103/PhysRevE.91.043016 PACS number(s): 47.27.−i, 47.32.Ef, 47.35.−i

I. INTRODUCTION

The energy content of turbulence is usually characterized
by the energy distribution among spatial scales, either in
physical or in Fourier space. For rotating, stratified, or
magnetohydrodynamic turbulence [1], waves can propagate
and coexist with classical eddies and coherent structures,
which advocates for a spatiotemporal description of such
flows. While temporal fluctuations are usually slaved to the
spatial ones via sweeping effects in classical turbulence [2,3],
they are expected to be governed by the dispersion relation of
the waves for time scales much smaller than the eddy turn-
over time. The latter regime is the subject of wave-turbulence
theory, in which the assumption of weak nonlinear coupling
between waves allows one to predict scaling laws for the spatial
energy spectrum [4,5].

It is a matter of debate whether wave-turbulence theory
(also known as weak-turbulence theory) is a good candidate
to describe rotating turbulence in the rapidly rotating limit.
Solutions to the linearized rotating Euler equation can be
decomposed into inertial waves, which satisfy the anisotropic
dispersion relation

σ (k) = 2�
|k‖|
|k| , (1)

where � is the rotation rate and k‖ the component of the
wave vector k along the rotation axis (referred to as the
vertical axis by convention) [6]. Accordingly, only fluid
motions at frequencies σ smaller than the Coriolis frequency
2� correspond to wave propagation. Fluid motions of weak
amplitude and slowly varying in time (σ � 2�) can be
described in terms of waves with nearly horizontal wave
vectors: They tend to be two-dimensional three-component
(2D3C), invariant along the rotation axis, a result known as
the Taylor-Proudman theorem.

The trend towards two-dimensionality is a landmark in
rotating turbulence, observed in both experiments and numer-
ical simulations [1,7–11]. It originates from the modification
of the nonlinear interactions by the Coriolis force, which

yields preferential energy transfers towards modes with almost
horizontal wave vectors [12–15]. In the frequency domain,
this corresponds to the generation of slow dynamics compared
to the characteristic frequency at which energy is supplied
to the system. These anisotropic energy transfers can be
accounted for in terms of resonant and nearly resonant triadic
interactions of inertial waves [16–19]. A major feature of
rotating turbulence is the emergence of inverse energy transfers
in the horizontal plane [13,19–26]. Inverse transfers between
3D fast wave modes and the 2D slow vortex mode, mediated
by near-resonant triadic interactions, are allowed at finite
Rossby number only [22,23,27–29]. The 2D mode is therefore
fed either from the coupling with the 3D modes at finite
Rossby number or from direct energy input by the forcing.
One naturally expects the energy within this 2D mode to
undergo an inverse energy cascade, similar to that of classical
(nonrotating) 2D turbulence [30,31].

Such coexistence between 2D and 3D flows is rele-
vant to most experiments and numerical simulations and
cannot be accounted for by wave-turbulence theory, which
describes the direct energy cascade arising from resonant
triadic interactions of 3D wave modes only [32,33]. This
theory therefore provides only a partial description of rotating
turbulence in realistic systems and careful experimental and
numerical studies remain necessary to assess its range of
validity.

Laboratory experiments differ from most numerical and
theoretical studies by the presence of rigid horizontal bound-
aries, where the rotating flow achieves no-slip conditions
through Ekman layers [34]. In a laminar Ekman layer, the
balance between the viscous and Coriolis forces leads to a
boundary layer thickness δEk � √

ν/�. The belief is that,
provided the experimental tank is deep enough, the bulk
turbulent flow away from the top and bottom boundaries
should resemble the one obtained in the ideal 3D periodic
or stress-free domains considered in most numerical and
theoretical studies. Closer to the horizontal walls, the boundary
layers induce Ekman friction that is not taken into account by
most numerical studies.
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In the laboratory, the energy dissipation of rotating turbulent
flows originates from three main contributions: bulk viscous
dissipation of 3D flow structures, bulk viscous dissipation of
quasi-2D flow structures (somewhat similar to the bulk energy
dissipation of 2D turbulence), and dissipation through Ekman
friction on the horizontal boundaries.

In spite of the importance of the 2D mode in most
geophysical and laboratory flows, the 3D fluctuations still
play a crucial role in the dynamics of rotating turbulence,
because they are much more efficient at dissipating energy.
This key feature is illustrated in Fig. 2, from data obtained in
the present experiment (setup sketched in Fig. 1; see Sec. III
for details): We decompose the turbulent velocity field into
a vertically averaged 2D flow and a vertically dependent 3D
remainder and show the corresponding energies and energy
dissipation rates as a function of global rotation. For maximum
rotation, although the 3D component contains a small fraction
of the total kinetic energy, its dissipation rate is as large
as that of the vertically invariant 2D component. Moreover,
both of these dissipations are larger than an estimate of the
frictional losses due to laminar Ekman layers (see Sec. III).
An accurate description of the 3D structures of the flow is
therefore essential to characterize the energy fluxes in rotating
turbulence at moderate Rossby number.

A primary goal in this direction is to determine the range
of scales and frequencies for which 3D fluctuations follow
the inertial-wave dispersion relation. This requires a full
spatiotemporal analysis, which is very demanding in general
for wave-turbulence systems: The accessible range of scales is
usually limited in experiments, whereas long integration times
are prohibitive in numerical simulations. The case of rotating
turbulence is particularly delicate because of the specific form
of the dispersion relation (1): The frequency is not related to
the wave number, as in conventional isotropic wave systems
such as surface waves [35] or elastic waves [36,37], but to the
wave-vector orientation only.

The recent studies of Clark di Leoni et al. [38] and Yarom
and Sharon [39] constitute important steps forward in this
respect. Using numerical simulation of rotating turbulence
forced at large scale, Clark di Leoni et al. [38] observe a
clear concentration of energy along the dispersion relation of
inertial waves and provide a detailed analysis of the various
time scales of the system. They observe a wave-dominated
regime at large scale and a sweeping-dominated regime at
small scale (see also Ref. [40]). In the experiment of Yarom
and Sharon [39] the forcing consists of a random set of
sources and sinks at the bottom of a rotating water tank. They
measure 3D2C velocity fields using a scanning particle image
velocimetry (PIV) technique and observe also good agreement
with the inertial-wave dispersion relation. In both Refs. [38]
and [39], the inertial waves are observed at scales smaller than
the injection scale, suggesting that they are fed by forward
energy transfers, which is consistent with the predictions of
wave-turbulence theory.

The aim of the present paper is to further analyze experi-
mentally the range of spatiotemporal scales at which inertial
waves can be detected in rotating turbulence. Stationary rotat-
ing turbulence is produced by a set of vortex dipole generators
that continuously inject turbulent fluctuations towards the
center of a rotating water tank where measurements are
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FIG. 1. (Color online) Experimental setup: (a) side view and (b)
top view. An arena of ten pairs of flaps forces a turbulent flow in
the central region of a water tank mounted on a rotating turntable.
A laser sheet illuminates a vertical slice through a horizontal glass
lid covering the fluid. Two-dimensional three-component velocity
measurements are performed using stereoscopic particle image
velocimetry in a vertical square domain of size �x × �z = 14 ×
14 cm2, shown as a dashed square in (a).

performed. We showed in Ref. [26] that this configuration
generates a double energy cascade at large rotation rate: an
inverse cascade of horizontal energy and a direct cascade of
vertical energy, which behaves approximately as a passive
scalar advected by the horizontal flow. Here we perform
a detailed spatiotemporal analysis using two-point spatial
correlations of the temporal Fourier modes computed from
time-resolved 2D3C velocity fields measured by stereoscopic
PIV in a vertical plane. We observe that, at large scales
and frequencies, the spatiotemporal anisotropy of the energy
distribution is well described by the dispersion relation of
inertial waves, whereas smaller scales are dominated by
the sweeping of the waves by the energetic large-scale
flow.

043016-2



DISENTANGLING INERTIAL WAVES FROM EDDY . . . PHYSICAL REVIEW E 91, 043016 (2015)

II. EXPERIMENTAL SETUP

The experimental setup, sketched in Fig. 1, is similar to the
one described in Refs. [26,41] and is only briefly described
here. It consists of a 125 × 125 × 65 cm3 glass tank, filled
with H = 50 cm of water and mounted on a 2-m-diam rotating
platform that rotates at a rate � in the range 0.21–1.68 rad s−1

(2–16 rpm). Turbulence is produced in the rotating frame
by a set of ten vertical vortex dipole generators organized
as a circular arena of 85 cm diameter around the center of
the water tank. This forcing device was initially designed
to generate turbulence in stratified fluids and is described in
detail in Refs. [42,43]. Each generator consists of a pair of
vertical flaps, 60 cm high and Lf = 10 cm long, alternatively
closing rapidly and opening slowly in a cyclic motion of period
T0 = 2π/σ0 = 8.5 s. The closing stage is achieved with the
flaps rotating at an angular velocity σf = 0.092 rad s−1 and a
random phase shift is applied between the generators.

In the laminar regime, a single pair of flaps generates vortex
dipoles with core vorticity ωf . Additional PIV measurements
close to a vortex dipole generator indicate that this core
vorticity is governed by the vorticity in the viscous boundary
layer of the flap ωf ∼ σf Lf /δ, where σf Lf is the flap
velocity and δ the viscous boundary layer thickness. In the
present experiment, the vortex dipoles are unstable and the
closing of the flaps therefore produces small-scale 3D turbulent
fluctuations that are advected towards the center of the arena
by the remaining large-scale dipolar structure.

The turbulent Reynolds number, computed from the rms
velocity and the horizontal integral scale, is about 400 in the
center of the flow and the turbulent Rossby number covers the
range 0.30–0.07 for � = 2–16 rpm [26]. We measure the three
components of the velocity field u = uxex + uyey + uzez

(with ez oriented vertically, along the rotation axis) in a vertical
square domain of size �x × �z = 14 × 14 cm2 located at the
center of the circular arena at mid-depth, using a stereoscopic
PIV system [44,45] embarked on the rotating platform. These
2D3C velocity fields are sampled on a grid of 80 × 80 vectors
with a spatial resolution of 1.75 mm. Two acquisition sets are
recorded for each rotation rate �: one set of 10 000 fields at
0.35 Hz and one set of 1000 fields at 1.5 Hz. The combination
of these two time series results in a temporal spectral range of
three decades.

III. 2D VS 3D FLOW COMPONENTS

In the present experiment, energy is primarily injected in
the 2D mode (vertically invariant), but the instabilities in
the vicinity of the flaps rapidly feed 3D fluctuations that are
advected in the central region. Energy transfers between the 2D
and 3D flow components, which vanish in the weak-turbulence
limit (Ro → 0), are allowed in our system because of the
moderate value of the Rossby number. It is therefore of interest
to quantify the energy contained in the 2D and 3D components
of the flow. We estimate the vertically averaged 2D flow as the
average of the velocity field over the vertical extent �z of the
PIV field,

u2D = 1

�z

∫ �z

0
u(x,z)dz, (2)
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u
2 i

/2
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FIG. 2. (Color online) (a) Energy and (b) energy dissipation rate
per unit mass for the 2D and 3D modes as a function of the rotation
rate �. In both figures, the first data points (shown with arrows, at
arbitrary abscissas) correspond to the nonrotating case � = 0.

and the remaining z-dependent 3D flow as u3D = u − u2D.
We compute the energy per unit mass of these two flow com-
ponents as 〈u2

2D〉/2 and 〈u2
3D〉/2, with the overline denoting

the temporal average and angular brackets the spatial average
over the PIV field. They are plotted in Fig. 2(a) as a function
of the rotation rate �. Because of the limited height of the
PIV field, the 2D flow estimated from Eq. (2) unavoidably
contains 3D fluctuations associated with vertical scales larger
than �z, so the measured 2D energy may overestimate the true
one.

Figure 2(a) shows that without rotation the 2D and 3D
components of the flow have comparable energy. With rotation,
the 2D energy increases with �, following approximately
the power law �2/3 [41], whereas the 3D energy remains
approximately constant and represents only 5% of the total
energy at the largest rotation rate. Although most of the energy
is contained in the 2D flow component for � 
= 0, a significant
fraction of the dissipation still arises from the 3D fluctuations.
Assuming axisymmetry, we compute an estimate of the energy
dissipation rate ε = ν〈(∂ui/∂xj )2〉 from the six terms of the

043016-3



CAMPAGNE, GALLET, MOISY, AND CORTET PHYSICAL REVIEW E 91, 043016 (2015)

velocity gradient tensor accessible in the 3C2D measurements,

ε � ν

〈
2

(
∂ux

∂x

)2

+ 2

(
∂uy

∂x

)2

+ 2

(
∂uz

∂x

)2

+
(

∂ux

∂z

)2

+
(

∂uy

∂z

)2

+
(

∂uz

∂z

)2〉
. (3)

This dissipation rate, computed for both u2D and u3D, is
shown in Fig. 2(b). Since the derivatives are obtained from
finite differences at the smallest resolved scale, the computed
dissipation underestimates the true one (the PIV resolution is
1.75 mm while the Kolmogorov scale is of order of 0.6 mm
[41]). However, we expect the measured evolution of ε with
� to reflect the true one.

We first compare these bulk energy dissipation rates to an
estimate of frictional losses due to laminar Ekman layers εEk �
ν

U 2
⊥rms

δ2
Ek

δEk
H

= √
ν�

U 2
⊥rms
H

, where U⊥rms is the root-mean-square

horizontal velocity. This estimate ranges from 8 × 10−9 m2 s−3

for � = 2 rpm to 1 × 10−7 m2 s−3 for � = 16 rpm; it is smaller
than the bulk energy dissipation of both the 2D and 3D parts
of the turbulent flow, by a factor of 10 for slow rotation and
4 for rapid rotation. A detailed experimental characterization
of these Ekman layers would be necessary to validate the
assumption of laminar layers, but it is beyond the scope of the
present study.

We now compare the bulk energy dissipation rates in the 2D
and 3D parts of the turbulent flow. Remarkably, while the 3D
fluctuations represent a small fraction of the total energy, they
account for a large fraction of the dissipation at all rotation
rates. It is therefore of interest to investigate these 3D modes
and to determine to what extent they can be described in terms
of inertial waves.

IV. TEMPORAL ANALYSIS

We now focus on the temporal dynamics of the velocity
field, which we characterize through the energy distribution
of turbulent fluctuations as a function of angular frequency σ .
This temporal energy spectrum is defined as

E(σ ) = 4π

T
〈|ũi(x,σ )|2〉, (4)

where

ũi(x,σ ) = 1

2π

∫ T

0
ui(x,t)e−iσ t dt (5)

is the temporal Fourier transform of the velocity field ui(x,t)
(with i = x,y,z), T the acquisition duration, and the angular
brackets the spatial average. The normalization is such that
〈u2

i 〉 = ∫ ∞
0 E(σ ) dσ , with the overline the temporal average.

We use the standard Welch method [46] to improve the
statistical convergence of the power spectrum.

We plot E(σ ) for each rotation rate � in Fig. 3. For
� 
= 0 we observe a global increase with � of the energy
at all frequencies, consistently with the behavior of the overall
energy in Fig. 2(a). These spectra for � 
= 0 strongly differ
from the nonrotating spectrum, with relatively much more
energy at low frequency in the rotating case: Global rotation
induces slow dynamics.

10−3 10−2 10−1 100 10110−7

10−6

10−5

10−4

10−3

10−2

E
( σ

)
(m

2
s−

1
)

Ω =

σ0 = 0.74 rad s−1

σ (rad s−1)

0 rpm
2 rpm
4 rpm
8 rpm
16 rpm

FIG. 3. (Color online) Temporal energy spectrum E(σ ) as a
function of the angular frequency σ for different rotation rates �.
Here σ0 indicates the frequency of the opening-and-closing cycle
of the flaps. The Coriolis frequency 2� is highlighted with closed
symbols.

A step towards a description of the flow anisotropy in the
frequency domain can be provided by further decomposing the
power spectrum density (4) as

E(σ ) = E‖(σ ) + E⊥(σ ), (6)

with E‖(σ ) = 4π〈|ũz(x,σ )|2〉/T the spectrum of the
vertical velocity and E⊥(σ ) = 4π〈|ũx(x,σ )|2〉/T +
4π〈|ũy(x,σ )|2〉/T the spectrum of the horizontal velocity.
This decomposition highlights the frequency-dependent
componentality of turbulence, i.e., the distribution of energy
among the different velocity components, which is related
to the polarization anisotropy [12,15,16]. This is not to
be confused with the frequency-dependent dimensionality
of turbulence, which compares the vertical and horizontal
characteristic scales at a given frequency (described in
Sec. V).

The temporal spectra E‖(σ ) and E⊥(σ )/2 are shown in
Fig. 4 for all rotation rates. Without rotation, energy is nearly
equally distributed among the three velocity components
(i.e., E⊥ � 2E‖). There is actually a slight overrepresentation
of horizontal energy, a consequence of the forcing device
geometry that preferentially injects energy in horizontal
motions. As the rotation rate increases, the high frequencies
remain nearly isotropic (isocomponent), whereas the low
frequencies become gradually anisotropic, with E‖(σ ) nearly
flat and E⊥(σ ) approaching a power law close to σ−5/3.
This anisotropy is related to the fact that, as � increases,
the decorrelation frequency (i.e., the frequency below which
the spectrum becomes flat) gets significantly smaller for the
horizontal velocity (σdec⊥ = 0.04 ± 0.01) than for the vertical
velocity (σdec‖, increasing from 0.05 to 0.40 rad s−1 for �

from 2 to 16 rpm). For the largest rotation rate (� = 16 rpm),
there is a clear range of frequencies over which the horizontal
spectrum E⊥(σ ) follows a σ−5/3 power law. This range gets
narrower for decreasing rotation rate �.
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FIG. 4. (Color online) Temporal energy spectra of the vertical E‖
[light gray (blue)] and horizontal E⊥/2 (black) velocity components
for different rotation rates �. For visibility, there is a vertical shift by
a factor of 103 between couples of curves at different �. The dashed
lines show power laws σ−5/3.

The decorrelation frequency of the vertical velocity appears
to scale as σdec‖∗ = σdec‖/2� = 0.25 ± 0.05, which becomes
evident when plotting the ratio 2E‖/E⊥ as a function of
the normalized frequency σ∗ = σ/2� (Fig. 5). In this figure,
for σ∗ > 1, for which no inertial waves can exist, energy is
nearly equally distributed among the velocity components
(2E‖/E⊥ � 1). The frequency range over which a power
law σ

5/3
∗ is approached is bounded by the two decorrelation

frequencies: on the left by σdec⊥ and on the right by σdec‖.
Interestingly, we also observe a small frequency domain
σdec‖∗ < σ∗ � 0.6 over which energy in the vertical component
is slightly larger than in each horizontal component. Such a
slight overrepresentation of the vertical velocity is compatible
with the componential anisotropy of an assembly of linear
inertial waves: A single plane inertial wave has a componential
anisotropy 2E‖/E⊥ = 2(1 − σ 2

∗ )/(1 + σ 2
∗ ) (shown as a dotted

line in Fig. 5), with a larger rms velocity along the vertical
than along any horizontal direction for σ∗ < 1/

√
3 � 0.6.

As can be seen in Fig. 2, for the experiment under rapid
rotation, nearly 90% of the energy is contained in the 2D vortex
mode. As discussed quantitatively in Campagne et al. [26], this
strong 2D nature of the flow drives an inverse cascade of energy
for the horizontal velocity and a direct cascade of energy for the

10−3 10−2 10−1 100 10110−3

10−2

10−1

100

101

2E
(σ

)/
E

⊥
(σ

)

σ∗

2 rpm

4 rpm

8 rpm

16 rpm∝ σ
5/3
∗

FIG. 5. Componential anisotropy ratio as a function of the nor-
malized frequency σ∗ = σ/2�. Isotropy is indicated by the horizontal
dashed line at 2E‖/E⊥ = 1. The dotted line indicates the prediction
for a plane inertial wave, i.e., 2E‖/E⊥ = 2(1 − σ 2

∗ )/(1 + σ 2
∗ ).

vertical velocity. The horizontal velocity consequently exhibits
slow dynamics, while the vertical velocity fluctuations are
found at higher frequencies (Fig. 4). This behavior is consistent
with the usual phenomenology of rapidly rotating turbulence:
The flow becomes approximately 2D at low frequency and
the vertical velocity behaves as a passive scalar, which is
stretched and folded by the horizontal velocity. This produces
thin vertical layers swept by the horizontal flow, yielding
rapidly changing time series of the vertical velocity. In a similar
fashion, the σ−5/3 power law of E⊥(σ ) could originate from
the stochastic sweeping by the large-scale horizontal flow of
a k

−5/3
⊥ spatial spectrum, reminiscent of the inverse energy

cascade of 2D turbulence.

V. SPATIOTEMPORAL ANALYSIS

A. Spatiotemporal correlations

We now turn to a combined spatiotemporal analysis of the
PIV time series, focusing on the signature of inertial waves
in terms of dimensional anisotropy. This signature is sought
here in terms of characteristic horizontal and vertical scales
of the turbulent structures as a function of their frequency.
For this, we define the frequency-dependent two-point spatial
correlation of the temporal Fourier transform of the velocity
field

R(r,σ ) = 2π

T
〈ũi(x,σ )ũ∗

i (x + r,σ ) + c.c.〉, (7)

with the asterisk denoting the complex conjugate (here again
Welch’s method is used to improve convergence). Instead of
the spectra considered in Refs. [38,39], we compute spatial
correlations, because the former are sensitive to finite-size
effects arising from the PIV field being of limited extent
compared to the largest flow structures. The correlation (7)
probes the energy distribution among vector separations r for
each frequency σ . Its angular average provides an estimate
for the cumulative energy from scale r = |r| to r = ∞ for
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FIG. 6. (Color online) Maps of the normalized two-point corre-
lation R(r,σ )/E(σ ) in the vertical plane (r⊥,r‖) for � = 0 (left) and
� = 16 rpm (right), at four frequencies σ = 0.1,0.7,2.4,3.3 rad s−1.
In the rotating case, the corresponding normalized frequen-
cies are σ∗ = σ/2� = 0.03,0.20,0.71,0.98. Isocontour lines for
R(r,σ )/E(σ ) < 0.2 are noisy and are not shown.

turbulent motions of frequency σ . The single-point limit of
this correlation is the temporal energy spectrum (4), i.e.,
E(σ ) = R(r = 0,σ ).

Maps of the normalized correlation R(r,σ )/E(σ ) are
plotted in Fig. 6 for � = 0 and 16 rpm at four selected angular
frequencies σ . In the nonrotating case, the iso-R lines are
approximately circular at all scales and frequencies, indicating

the overall isotropy of turbulence. The strongly peaked
correlation that develops around r = 0 as σ increases indicates
that rapid turbulent fluctuations are found at small scales
only. In the rotating case, the iso-R lines evolve gradually
from quasivertical at small frequency (“cigar” anisotropy)
to more horizontal for σ∗ ∼ 1 (“pancake” anisotropy), with
σ∗ = σ/2� the normalized frequency. The cigar anisotropy
observed at σ∗ � 1 is consistent with the 2D3C vertical
invariance predicted by the Taylor-Proudman theorem for
vanishing frequency: It corresponds to the zero-frequency limit
of Eq. (1) for a nearly horizontal wave vector. Similarly, the
tendency towards pancake anisotropy, observed for σ∗ → 1
and sufficiently large r⊥, is consistent with the nearly vertical
wave-vector limit of Eq. (1).

A natural way to characterize the frequency-dependent
anisotropy would be to compute integral scales along and
normal to the rotation axis at each frequency. Here we consider
a finer approach, which also takes into account the scale
dependence of this anisotropy: For each frequency σ and
horizontal scale r⊥, we identify the vertical scale �‖(r⊥,σ )
at which the correlation along the vertical axis is equal to the
one at r⊥e⊥, i.e., such that R(r = �‖e‖,σ ) = R(r = r⊥e⊥,σ ).
In practice, we compute �‖ as the vertical semiaxis obtained
from the fit of the iso-R line defined by R(r,σ ) = R(r⊥e⊥,σ )
with an ellipse of prescribed horizontal semiaxis r⊥. This
method allows us to filter out the noise in the iso-R lines
at small R. It also extends the analysis to values of �‖ larger
than the PIV field height (�z = 140 mm), which is useful at
small σ∗ for nearly vertically invariant R. Poor fits defined
by a correlation coefficient less than 0.9 or such that �‖ is
larger than 2�z are discarded. We finally define the scale- and
frequency-dependent anisotropy factor as

A(r⊥,σ ) = r⊥
�‖(r⊥,σ )

. (8)

It is equal to 1 for isotropic turbulence, to 0 for vertically
invariant (2D3C) turbulence, and to ∞ for horizontally
invariant (1D2C) turbulence.

If the anisotropy of the two-point correlation R at frequency
σ∗ � 1 is governed by linear inertial waves, we expect
A to be independent of the scale and to be set by the
dispersion relation (1). A simple estimate, assuming that
the wave vector k is in the vertical measurement plane and
identifying on dimensional grounds �‖ ∼ k−1

‖ and r⊥ ∼ k−1
⊥ ,

yields a frequency-dependent anisotropy factor AIW(σ∗) �
(σ−2

∗ − 1)−1/2. Considering now an assembly of inertial waves
with an axisymmetric wave-vector distribution, an analytic
computation (given in the Appendix) leads to a very similar
result

AIW(σ∗) =
√

2

σ−2∗ − 1
. (9)

In Figs. 7(a)–7(c) we compare the anisotropy factor A

measured in the four rotating experiments to the inertial-wave
prediction (9) at three horizontal scales r⊥ = 9, 18, and
50 mm. For all scales and σ∗ � 1, A is an increasing function
of σ∗, confirming that slow fluctuations are more vertically
elongated than fast fluctuations. We find that the inertial-wave
prediction (9) provides a good description of the data at large
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FIG. 7. Anisotropy factor A (8) as a function of the normalized
frequency σ∗ = σ/2� at different rotation rates (same symbols as
in Fig. 3), for three horizontal scales (a) r⊥ = 9, (b) r⊥ = 18, and
(c) r⊥ = 50 mm. The solid line represents the inviscid inertial-wave
prediction AIW (9).

horizontal scales and large rotation rate. For such large scales
(r⊥ � 50 mm), the anisotropy factor is no longer accessible
for σ∗ < 0.1 because it corresponds to �‖ much larger than
the height of the PIV field. On the other hand, at smaller
horizontal scale the prediction (9) fails, with small frequencies
more isotropic than predicted by the inertial-wave argument.

Because of the moderate Reynolds and Rossby numbers
of the present experiment, two effects may be considered to
explain why large scales follow the inertial-wave prediction
whereas small scales do not: viscous damping and sweeping
of small scales by the velocity at larger scales. Viscosity
introduces an imaginary term iν|k|2 in the dispersion relation

(1) without modifying its real part. Waves (σ,k) such that
|k| � r−1

ν are therefore damped, with rν = √
ν/σ a viscous

cutoff. This viscous cutoff is of the order of 1 to 10 mm
for the normalized frequencies σ∗ = σ/2� in the range
[10−2,1] considered in Fig. 5. However, since viscous damping
affects the wave amplitude without modifying the wave-vector
components, its should not affect the anisotropy. We therefore
focus in the following on the sweeping effect.

B. Sweeping effect

Sweeping corresponds to the advection of the waves by the
large-scale flow, which leads to a modification of their apparent
frequency. An inertial wave propagating in a time-independent
uniform flow U has a Doppler-shifted frequency

σ = σi + k · U, (10)

where σi is the intrinsic frequency given by (1) and σ is
the frequency at which the wave is detected in the frame of
the rotating tank. In our experiment, the energetic large-scale
2D flow may be thought of locally as a uniform sweeping
flow U that evolves slowly in time, inducing a scrambling of
the waves’ spatiotemporal signature. An order of magnitude
of the typical Doppler shift can be estimated by k⊥U⊥rms,
where U⊥rms is the root-mean-square horizontal velocity. A
key difference between Eqs. (10) and (1) is that the frequency
σ now depends on the magnitude of k, with small-scale waves
more affected by sweeping.

For an ensemble of inertial waves with axisymmetric wave-
vector statistics, the intrinsic frequency σi can be related to
the anisotropy through Eq. (9). Substituting the corresponding
expression into (10) and estimating the Doppler-shift term on
dimensional grounds, we obtain

σ � 2�√
1 + 2A−2

+ CU⊥rms

r⊥
, (11)

where C is a constant of order unity. This indicates that the
parameter

N = 2�r⊥
U⊥rms

√
1 + 2/A2

(12)

should be a unique function of the sweeping parameter
S = U⊥rms/σr⊥. Here, N corresponds approximately to the
intrinsic frequency of inertial waves rescaled by the advective
time r⊥/U⊥rms, whereas S is the observed period of the waves,
rescaled by the same advective time.

Figure 8 confirms this picture: The data for different values
of �, r⊥, and σ collapse onto a master curve N = f (S).
This collapse indicates that sweeping is indeed responsible
for the departure from the inertial-wave prediction at small
frequencies and/or small scales. The expected asymptotic
behavior for a small sweeping parameter is N � 1/S, which
corresponds to the prediction (9) for an axisymmetric ensemble
of nonswept inertial waves. The data are in quantitative
agreement with this small-S prediction, shown as a dashed
line in Fig. 8. For large S, Eq. (11) indicates that N should
asymptotically approach a constant value N � C, which again
is compatible with the data.

The master curve in Fig. 8 has the following simple
interpretation: High-frequency or large-scale waves are hardly
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FIG. 8. Rescaled intrinsic frequency N (12) as a function of the
sweeping parameter S. The symbols indicate the different rotation
rates and are the same as in Fig. 3. The dashed line N ∼ 1/S

shows the low-S prediction for (nonswept) ensembles of inertial
waves [Eq. (12)]. For S � 1 one sees the signature of the dispersion
relation (1), while for S � 1 one detects swept inertial waves.

affected by sweeping. The Doppler-shift term is negligible
compared to their intrinsic frequency and their location in
a space-time energy distribution is given by the dispersion
relation (1). This is the low-S behavior in Fig. 8.

By contrast, when focusing on low frequencies σ or small
scales in the frame of the tank, one measures the inertial waves
with intrinsic frequency σi = σ , but one also detects many
waves with σi 
= σ that are Doppler shifted back to frequency
σ by the advective term in (10). The anisotropy measured at
low frequency σ therefore results from strongly swept inertial
waves with various intrinsic frequencies and the information
from the dispersion relation (1) is lost in the space-time
correlation. The limit S � 1 corresponds to frequencies σ that
are much lower than the inverse advective time. In this σ → 0
limit, one detects mostly waves with σi � σ that are Doppler
shifted by the horizontal flow in such a way that they are almost
steady in the frame of the tank: This is a σ -independent regime
that corresponds to the large-S plateau in Fig. 8.

VI. CONCLUSION

In the present experiment, the anisotropy of the turbulent
energy distribution at a given spatiotemporal scale (r⊥,σ )
is well described by the inertial-wave dispersion relation at
high frequency and/or large scale only. The smaller-scale
waves are subject to intense sweeping by large-scale turbulent
motions contained predominantly in the 2D vortex mode. This
conclusion is compatible with the numerical findings of Clark
di Leoni et al. [38], who also identify the sweeping time scale
as the relevant decorrelation time at small scale.

Such sweeping by the 2D mode has strong implications for
wave-turbulence theories. Indeed, most waves do not follow
the inertial-wave dispersion relation and the assumptions of
weak-turbulence theory break down even at the linear stage
in wave amplitude: Instead of the dispersion relation (1), the
linear problem consists in determining the evolution of waves

embedded in a turbulent 2D flow. This is a formidable task
in general because the 2D flow is space and time dependent:
In the discussion of our data, we simplified the problem by
assuming that the 2D flow is at much larger scales and slower
frequencies than the waves, therefore including it as a simple
Doppler-shift term in the dispersion relation.

We conclude with a discussion on the dimensionality of
the forcing. In the present experiment, the flow is driven
by vertically invariant flaps: Such a quasi-2D forcing device
enhances two dimensionalization and the resulting sweeping of
the 3D flow structures. Nevertheless, accumulation of energy
in the 2D mode is a robust feature of rotating turbulence, which
takes place for arbitrary forcing geometry, even if the forcing
does not input energy directly into the 2D mode. A careful
and extensive numerical study of this issue has been recently
reported for the fully 3D Taylor-Green forcing [47]: For rapid
global rotation and low viscosity, energy accumulates in the
2D mode until the Rossby number based on the velocity of
this 2D flow is of order unity. If these findings are confirmed,
the sweeping of the most energetic 3D structures would be an
inevitable outcome of this accumulation of 2D energy.
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APPENDIX: ANISOTROPY FACTOR FOR A
STATISTICALLY AXISYMMETRIC DISTRIBUTION OF

INERTIAL WAVES

We compute the anisotropy factor A for an ensemble of
independent plane inertial waves, with axisymmetric wave-
vector statistics. The temporal Fourier transform of the velocity
field reads

ũ(x,σ ) =
∫

a(k,σ )eik·xdk, (A1)

where a(k,σ ) is the space-time Fourier amplitude of the
velocity field at wave number k and frequency σ . The two-
point velocity correlation at frequency σ (7) can be written

R(r,σ ) = 1

2

〈 ∫∫
a(k1,σ ) · a∗(k2,σ )

× ei(k1·x−k2·(x+r))dk1dk2 + c.c.

〉

=
∫

|a(k,σ )|2 cos(k · r)dk, (A2)

where the angular brackets is the space average and r is a
separation vector inside the PIV plane. Introducing spherical
coordinates with vertical polar axis, we denote by ϕ the
azimuthal angle between k and the vertical PIV plane. The
argument of the cosine becomes

k · r = k‖r‖ + k⊥r⊥ cos ϕ. (A3)
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Let us first consider an ensemble of inertial waves hav-
ing the same wave number |k| = k. For a given reduced
frequency σ∗ = σ/2�, the dispersion relation determines the
ratio |k‖|/k⊥ and because of statistical axisymmetry |a(k,σ )|2
is independent of ϕ. The spatial correlation at frequency σ

becomes

R(r,σ ) = G(k,σ )

2π

∫ 2π

0
cos(k‖r‖ + k⊥r⊥ cos ϕ)dϕ,

= G(k,σ ) cos(σ∗kr‖)J0(
√

1 − σ 2∗ kr⊥), (A4)

where J0 is the Bessel function of the first kind and G(k,σ ) is
a prefactor proportional to the squared amplitude of the waves
at wave number k and frequency σ .

For a given frequency σ and horizontal scale r⊥, the vertical
scale �‖(r⊥,σ ) is determined from the isolines of R in the
(r⊥,r‖) plane. An isoline of R starting on the horizontal axis
at r⊥ intersects the vertical axis at r‖ = �‖(r⊥,σ ). According
to expression (A4), such isolines connecting the two axes
exist provided the argument of the Bessel function is smaller
than the first zero of this function, i.e.,√

1 − σ 2∗ kr⊥ < C0, (A5)

where J0(C0) = 0 (C0 � 2.40). Equating expression (A4)
computed for (r⊥,r‖ = 0) and for (r⊥ = 0,r‖ = �‖)

leads to

�‖(r⊥,σ∗) = arccos[J0(
√

1 − σ 2∗ kr⊥)]

σ∗k
(A6)

and an anisotropy factor

A(r⊥,σ∗) = kr⊥σ∗
arccos[J0(

√
1 − σ 2∗ kr⊥)]

. (A7)

This anisotropy factor depends very weakly on kr⊥: It is
minimum for low kr⊥, where Taylor expansion for kr⊥ � 1
leads to

A(r⊥,σ∗) �
√

2
σ∗√

1 − σ 2∗
, (A8)

whereas it is maximum for the maximum value of r⊥ allowed
by (A5), which gives

A(r⊥,σ∗) � 2C0

π

σ∗√
1 − σ 2∗

� 1.53
σ∗√

1 − σ 2∗
. (A9)

Because the numerical prefactors in (A8) and (A9) differ
by less than 10%, we can say that the anisotropy factor of
this statistically axisymmetric distribution of inertial waves
is given by expression (A8) within 10% accuracy. Because
this anisotropy factor is almost independent of k, we finally
expect it to be approximately given by expression (A8) for a
realistic superposition of inertial waves with different wave
numbers k.
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