10 research outputs found

    Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery.

    Get PDF
    In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT’s concentration obtained via UV–visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms’ percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms’ percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C–N and N–C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.This work was supported by the Basque Country Government (IT907-16). Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), an initiative of the Carlos III Health Institute (ISCIII)

    Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging

    Get PDF
    [EN] Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimers disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.This work was supported by the University of the Basque Country (UPV/EHU) [Grant ESPDOC19/47] (postdoctoral fellowship to I.V.B.); and the Basque Country Government (Consolidated Groups) [Grant IT907-16]

    How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy?

    Get PDF
    Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.This work was supported by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16) and by the Spanish Ministry of Science and Innovation (Grant PID2019-106199RB-C21). I.V.B. and M.S.R. thank the University of the Basque Country (UPV/EHU) for the granted postdoctoral fellowship (ESPDOC19/47) and the granted pre-doctoral fellowship (PIF17/79), respectively. Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), an initiative of the Carlos III Health Institute (ISCIII)

    Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine

    Get PDF
    The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.This research was funded by the BASQUE COUNTRY GOVERNMENT/EUSKO JAURLARITZA (Department of Education, University and Research, Consolidated Groups IT907-16). Authors S.R.-A. and M.S.-R. thank the BASQUE COUNTRY GOVERNMENT for the granted fellowship (PRE_2020_2_0143) and the UNIVERSITY OF THE BASQUE COUNTRY/EUSKAL HERRIKO UNIBERTSITATEA (UPV/EHU) for the granted pre-doctoral fellowship (PIF17/79), respectively

    Progress in 3D Bioprinting Technology for Osteochondral Regeneration

    Get PDF
    Osteochondral injuries can lead to osteoarthritis (OA). OA is characterized by the progressive degradation of the cartilage tissue together with bone tissue turnover. Consequently, joint pain, inflammation, and stiffness are common, with joint immobility and dysfunction being the most severe symptoms. The increase in the age of the population, along with the increase in risk factors such as obesity, has led OA to the forefront of disabling diseases. In addition, it not only has an increasing prevalence, but is also an economic burden for health systems. Current treatments are focused on relieving pain and inflammation, but they become ineffective as the disease progresses. Therefore, new therapeutic approaches, such as tissue engineering and 3D bioprinting, have emerged. In this review, the advantages of using 3D bioprinting techniques for osteochondral regeneration are described. Furthermore, the biomaterials, cell types, and active molecules that are commonly used for these purposes are indicated. Finally, the most recent promising results for the regeneration of cartilage, bone, and/or the osteochondral unit through 3D bioprinting technologies are considered, as this could be a feasible therapeutic approach to the treatment of OA.This research was funded by the BASQUE COUNTRY GOVERNMENT/EUSKO JAURLARITZA (Department of Education, University and Research, Consolidated Groups IT907- 16). Author S.R.-A. thank the BASQUE COUNTRY GOVERNMENT for the granted fellowship (PRE_2021_2_0153)

    Current Insights into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration

    Get PDF
    Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.This research was fundedby the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16 and grant number PRE_2020_2_0143), and forms part of the Nanogrow project RTC-2017-6696-1. Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and initiative of the Carlos III Health Institute (ISCIII) and by the University of the Basque Country (UPV/EHU), post-doctoral grant number ESPDOC19/47). The APC was funded by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16)

    Sphingolipid extracts enhance gene delivery of cationic lipid vesicles into retina and brain

    Get PDF
    [EN]The aim was to evaluate relevant biophysic processes related to the physicochemical features and gene transfection mechanism when sphingolipids are incorporated into a cationic niosome formulation for non-viral gene delivery to central nervous system. For that, two formulations named niosphingosomes and niosomes devoid of sphingolipid extracts, as control, were developed by the oil-in water emulsion technique. Both formulations and the corresponding complexes, obtained upon the addition of the reporter EGFP plasmid, were physicochemically and biologically characterized and evaluated. Compared to niosomes, niosphingosomes, and the corresponding complexes decreased particle size and increased superficial charge. Although there were not significant differences in the cellular uptake, cell viability and transfection efficiency increased when human retinal pigment epithelial (ARPE-19) cells were exposed to niosphingoplexes. Endocytosis via caveolae decreased in the case of niosphingoplexes, which showed higher co-localization with lysosomal compartment, and endosomal escape properties. Moreover, niosphingoplexes transfected not only primary central nervous system cells, but also different cells in mouse retina, depending on the administration route, and brain cortex. These preliminary results suggest that niosphingosomes represent a promising non-viral vector formulation purposed for the treatment of both retinal and brain diseases by gene therapy approach.This work was supported by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16) . Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , an initiative of the Carlos III Health Institute (ISCIII) . I.V.B. and M.S.R. thank the University of the Basque Country (UPV/EHU) for the granted postdoctoral fellowship (ESPDOC19/47) and the granted pre-doctoral fellowship (PIF17/79) , respectively. Authors wish to thank the intel-lectual and technical assistance from the ICTS "NANBIOSIS," more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU) . Technical and human sup-port provided by SGIKER (UPV/EHU) is also gratefully acknowledged

    Assessment of Different Niosome Formulations for Optogenetic Applications: Morphological and Electrophysiological Effects

    Get PDF
    Gene therapy and optogenetics are becoming promising tools for treating several nervous system pathologies. Currently, most of these approaches use viral vectors to transport the genetic material inside the cells, but viruses present some potential risks, such as marked immunogenicity, insertional mutagenesis, and limited insert gene size. In this framework, non-viral nanoparticles, such as niosomes, are emerging as possible alternative tools to deliver genetic material, avoiding the aforementioned problems. To determine their suitability as vectors for optogenetic therapies in this work, we tested three different niosome formulations combined with three optogenetic plasmids in rat cortical neurons in vitro. All niosomes tested successfully expressed optogenetic channels, which were dependent on the ratio of niosome to plasmid, with higher concentrations yielding higher expression rates. However, we found changes in the dendritic morphology and electrophysiological properties of transfected cells, especially when we used higher concentrations of niosomes. Our results highlight the potential use of niosomes for optogenetic applications and suggest that special care must be taken to achieve an optimal balance of niosomes and nucleic acids to achieve the therapeutic effects envisioned by these technologies.This research was funded in part by grants RTI2018-098969-B-I00, PRE2019-087693, DTS19/00175, and PDC2022-133952-100 from the Spanish “Ministerio de Ciencia, Innovación y Universidades” and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 899287 (NeuraViPeR)

    Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues

    Get PDF
    Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.This work was supported by the Basque Country Government (Department of Education, University and Research, pre-doctoral grant PRE_2016_2_0302 and Consolidated Groups IT907-16). Additional funding was provided by the University of Basque Country UPV/EHU (predoctoral grant PIF17/19), the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and initiative of the Carlos III Health Institute (ISCIII)
    corecore