39 research outputs found

    Transcriptional memory emerges from cooperative histone modifications

    Get PDF
    Background
Transcriptional regulation in cells makes use of diverse mechanisms to ensure that functional states can be maintained and adapted to variable environments; among them are chromatin-related mechanisms. While mathematical models of transcription factor networks controlling development are well established, models of transcriptional regulation by chromatin states are rather rare despite they appear to be a powerful regulatory mechanism.
Results
We here introduce a mathematical model of transcriptional regulation governed by histone modifications. This model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions between these complexes and DNA or histones create a regulatory switch of transcriptional activity possessing a regulatory memory. The regulatory states of the switch depend on the activity of histone (de-) methylases, the structure of the DNA-binding regions of the complexes, and the number of histones contributing to binding. 
We apply our model to transcriptional regulation by trithorax- and polycomb- complex binding. By analyzing data on pluripotent and lineage-committed cells we verify basic model assumptions and provide evidence for a positive effect of the length of the modified regions on the stability of the induced regulatory states and thus on the transcriptional memory.
Conclusions
Our results provide new insights into epigenetic modes of transcriptional regulation. Moreover, they implicate well-founded hypotheses on cooperative histone modifications, proliferation induced epigenetic changes and higher order folding of chromatin which await experimental validation. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification. 
&#xa

    Individual fates of mesenchymal stem cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs) as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation.</p> <p>Results</p> <p>By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells.</p> <p>Conclusions</p> <p>Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC <it>in vitro</it>. Our predictions on MSC plasticity and its dependence on the environment motivate a number of <it>in vitro </it>experiments for validation. They may contribute to a better understanding of MSC organisation <it>in vitro</it>, including features of clonal expansion, environmental adaptation and stem cell ageing.</p

    Epigenetic Drifts during Long-Term Intestinal Organoid Culture

    Get PDF
    Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics. As a potential explanation of these alterations, epigenetic drifts in organoid culture have been suggested. Here, we studied histone tri-methylation at lysine 4 (H3K4me3) and 27 (H3K27me3) and transcriptome profiles of intestinal organoids derived from mismatch repair (MMR)-deficient and control mice and cultured for 3 and 20 weeks and compared them with data on their tissue of origin. We found that, besides the expected changes in short-term culture, the organoids showed profound changes in their epigenomes also during the long-term culture. The most prominent were epigenetic gene activation by H3K4me3 recruitment to previously unmodified genes and by H3K27me3 loss from originally bivalent genes. We showed that a long-term culture is linked to broad transcriptional changes that indicate an ongoing maturation and metabolic adaptation process. This process was disturbed in MMR-deficient mice, resulting in endoplasmic reticulum (ER) stress and Wnt activation. Our results can be explained in terms of a mathematical model assuming that epigenetic changes during a long-term culture involve DNA demethylation that ceases if the metabolic adaptation is disturbed

    Lgr5(+) gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus

    Get PDF
    SummaryThe pyloric epithelium continuously self-renews throughout life, driven by limited reservoirs of resident Lgr5+ adult stem cells. Here, we characterize the population dynamics of these stem cells during epithelial homeostasis. Using a clonal fate-mapping strategy, we demonstrate that multiple Lgr5+ cells routinely contribute to epithelial renewal in the pyloric gland and, similar to what was previously observed in the intestine, a balanced homeostasis of the glandular epithelium and stem cell pools is predominantly achieved via neutral competition between symmetrically dividing Lgr5+ stem cells. Additionally, we document a lateral expansion of stem cell clones via gland fission under nondamage conditions. These findings represent a major advance in our basic understanding of tissue homeostasis in the stomach and form the foundation for identifying altered stem cell behavior during gastric disease

    Overexpression of CD97 in Intestinal Epithelial Cells of Transgenic Mice Attenuates Colitis by Strengthening Adherens Junctions

    Get PDF
    The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis

    Assessing the impact of COVID-19 on liver cancer management (CERO-19)

    Get PDF
    Background & Aims: The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges to healthcare systems and it may have heavily impacted patients with liver cancer (LC). Herein, we evaluated whether the schedule of LC screening or procedures has been interrupted or delayed because of the COVID-19 pandemic. Methods: An international survey evaluated the impact of the COVID-19 pandemic on clinical practice and clinical trials from March 2020 to June 2020, as the first phase of a multicentre, international, and observational project. The focus was on patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma, cared for around the world during the first COVID-19 pandemic wave. Results: Ninety-one centres expressed interest to participate and 76 were included in the analysis, from Europe, South America, North America, Asia, and Africa (73.7%,17.1%, 5.3%, 2.6%, and 1.3% per continent, respectively). Eighty-seven percent of the centres modified their clinical practice: 40.8% the diagnostic procedures, 80.9% the screening programme, 50% cancelled curative and/or palliative treatments for LC, and 41.7% modified the liver transplantation programme. Forty-five out of 69 (65.2%) centres in which clinical trials were running modified their treatments in that setting, but 58.1% were able to recruit new patients. The phone call service was modified in 51.4% of centres which had this service before the COVID-19 pandemic (n = 19/37). Conclusions: The first wave of the COVID-19 pandemic had a tremendous impact on the routine care of patients with liver cancer. Modifications in screening, diagnostic, and treatment algorithms may have significantly impaired the outcome of patients. Ongoing data collection and future analyses will report the benefits and disadvantages of the strategies implemented, aiding future decision-making. Lay summary: The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges to healthcare systems globally. Herein, we assessed the impact of the first wave pandemic on patients with liver cancer and found that routine care for these patients has been majorly disrupted, which could have a significant impact on outcomes. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL)

    Noise-Driven Stem Cell and Progenitor Population Dynamics

    Get PDF
    BACKGROUND: The balance between maintenance of the stem cell state and terminal differentiation is influenced by the cellular environment. The switching between these states has long been understood as a transition between attractor states of a molecular network. Herein, stochastic fluctuations are either suppressed or can trigger the transition, but they do not actually determine the attractor states. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel mathematical concept in which stem cell and progenitor population dynamics are described as a probabilistic process that arises from cell proliferation and small fluctuations in the state of differentiation. These state fluctuations reflect random transitions between different activation patterns of the underlying regulatory network. Importantly, the associated noise amplitudes are state-dependent and set by the environment. Their variability determines the attractor states, and thus actually governs population dynamics. This model quantitatively reproduces the observed dynamics of differentiation and dedifferentiation in promyelocytic precursor cells. CONCLUSIONS/SIGNIFICANCE: Consequently, state-specific noise modulation by external signals can be instrumental in controlling stem cell and progenitor population dynamics. We propose follow-up experiments for quantifying the imprinting influence of the environment on cellular noise regulation.Engineering and Applied SciencesOther Research Uni

    Humanin, a Cytoprotective Peptide, Is Expressed in Carotid Artherosclerotic Plaques in Humans

    Get PDF
    The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque

    Linking DNA Damage and Age-Related Promoter DNA Hyper-Methylation in the Intestine

    No full text
    Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Here, we explore whether and how DNA damage repair might impact on these time-dependent changes, in particular in proliferative intestinal stem cells. We introduce a 3D multiscale computer model of intestinal crypts enabling simulation of aberrant DNA and histone methylation of gene promoters during aging. We assume histone state-dependent activity of de novo DNA methyltransferases (DNMTs) and methylation-dependent binding of maintenance DNMTs to CpGs. We simulate aging with and without repeated DNA repair. Motivated by recent findings on the histone demethylase KDM2b, we consider that DNA repair is associated with chromatin opening and improved recruitment of de novo DNMTs. Our results suggest that methylation-dependent binding of maintenance DNMTs to CpGs, establishing bistable DNA methylation states, is a prerequisite to promoter hyper-methylation following DNA repair. With this, the transient increase in de novo DNMT activity during repair can induce switches from low to high methylation states. These states remain stable after repair, leading to an epigenetic drift. The switches are most frequent in genes with H3K27me3 modified promoters. Our model provides a mechanistic explanation on how even successful DNA repair might confer long term changes of the epigenome

    Organoid Cultures In Silico: Tools or Toys?

    No full text
    The implementation of stem-cell-based organoid culture more than ten years ago started a development that created new avenues for diagnostic analyses and regenerative medicine. In parallel, computational modelling groups realized the potential of this culture system to support their theoretical approaches to study tissues in silico. These groups developed computational organoid models (COMs) that enabled testing consistency between cell biological data and developing theories of tissue self-organization. The models supported a mechanistic understanding of organoid growth and maturation and helped linking cell mechanics and tissue shape in general. What comes next? Can we use COMs as tools to complement the equipment of our biological and medical research? While these models already support experimental design, can they also quantitatively predict tissue behavior? Here, we review the current state of the art of COMs and discuss perspectives for their application
    corecore