143 research outputs found

    Ecology of galaxy stellar populations from optical spectroscopic surveys

    Full text link
    The age and chemical composition of the stars in present-day galaxies carry important clues about their star formation processes. The latest generation of population synthesis models have allowed to derive age and stellar metallicity estimates for large samples of low-redshift galaxies. After reviewing the main results about the distribution in ages and metallicities as a function of galaxy mass, I will concentrate on recent analysis that aims at disentangling the dependences of stellar populations properties on environment and on galaxy stellar mass. Finally, new models that predict the response of the full spectrum to variations in [alpha/Fe] will allow us to derive accurate estimates of element abundance ratios and gain deeper insight into the timescales of star formation cessation.Comment: 4 pages, 1 figure, proceedings of IAUS 262 "Stellar populations: planning for the next decade

    Stellar mass-to-light ratios from galaxy spectra: how accurate can they be?

    Full text link
    Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light (M/L) ratios from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M/L values using either absorption-line data or broad band colors. The accuracy of M/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M/L accuracy clearly depends on the spectral S/N ratio, there is no significant gain in improving the S/N much above 50/pix and limiting uncertainties of 0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high Hdelta at fixed D4000), the M/L of which cannot be constrained any better than 0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.Comment: accepted for publication on ApJ

    Modeling and interpretation of galaxy spectra: the stellar populations of nearby galaxies

    Get PDF
    Our current understanding of structure formation in the Universe seems to be well described by a hierarchical scenario, in which small units assemble first to produce more massive systems. In recent years, much observational evidence has been accumulated, indicating that star formation proceeded instead in an antihierarchical fashion. Constraining the age and chemical composition of the stellar populations in galaxies should help shed light on this apparent dichotomy between mass assembly and star formation activity. The integrated spectra of galaxies contain valuable clues about the ages and metallicities of the stars producing the light. However, at first order, they are affected in a similar way by age and metallicity. Studies of more refined spectral diagnostics, such as individual stellar absorption features, are thus needed to provide more stringent constraints on these parameters. This method has been limited so far to small samples of elliptical galaxies, using population synthesis models with limited spectral resolution and restricted coverage in stellar effective temperatures. The objective of this thesis is the interpretation of the optical spectra of large samples of nearby galaxies in terms of the light-weighted metallicity, age and mass of their stellar populations. I have developed a new method to simultaneously derive median-likelihood estimates of each physical parameter and the associated confidence intervals. The method, based on a recent highresolution population synthesis code with full temperature coverage, consists in comparing each observed spectrum with a comprehensive library of star formation histories. The constraints are set by the simultaneous fit of an optimally selected set of spectral absorption features. I have applied this method to a sample of 200,000 galaxies from the Sloan Digital Sky Survey, including galaxies with any star formation history, from quiescent early-type to actively star forming galaxies. Thanks to the unprecedented statistics, I could give an accurate description of the galaxy distribution in the full physical parameters space. The relation between stellar metallicity, age and stellar mass shows a rapid transition from low-mass, young, metal-poor to high-mass, old, metal-rich galaxies at a stellar mass of 3×10^10 solar masses, the same characteristic scale of several observed bi-modalities in galaxy properties. The stellar metallicity-mass relation is interpreted as a manifestation of galactic winds, which are more efficient in removing metals from the shallow potential well of low-mass galaxies. I then explored the implications of the above relations to re-assess the physical origin of observed scaling relations of elliptical galaxies, linking their luminous and dynamical mass to the properties of their stellar populations. The relations are driven by an increase in metallicity, age and element abundance ratios with galaxy mass. The scatter is contributed by a similar amount by both age and metallicity. The increasing spread towards younger ages at low stellar masses indicates that low-mass ellipticals either formed their stars later or have a more extended star formation history. This hints at a shift in stellar growth towards less massive galaxies in recent epochs. The large ranges in observational and physical properties covered by SDSS galaxies make it a representative sample of the local Universe. I could thus derive the total mass density of metals and baryons locked up in stars today. I have also studied how metals and stellar mass are distributed as a function of various galaxy properties. The galaxies containing the bulk of the total stellar mass (massive, bulge-dominated galaxies with old stellar populations) are also those that contribute the largest fraction of metals, as expected from the mass-metallicity relation. These quantities set the fundamental constraints at the present epoch of the cosmic star formation and chemical enrichment histories. The more detailed knowledge of the relations between galaxy physical parameters allows a more direct comparison with predictions from semi-analytic models of galaxy formation and evolution. Moreover, the more robust constraints represent an important calibration at redshift zero for similar studies at higher redshifts

    The ages and metallicities of galaxies in the local universe

    Full text link
    We derive stellar metallicities, light-weighted ages and stellar masses for a magnitude-limited sample of 175,128 galaxies drawn from the Sloan Digital Sky Survey Data Release Two (SDSS DR2). We compute median-likelihood estimates of these parameters using a large library of model spectra at medium-high resolution, covering a comprehensive range of star formation histories. The constraints we derive are set by the simultaneous fit of five spectral absorption features, which are well reproduced by our population synthesis models. By design, these constraints depend only weakly on the alpha/Fe element abundance ratio. Our sample includes galaxies of all types spanning the full range in star formation activity, from dormant early-type to actively star-forming galaxies. We show that, in the mean, galaxies follow a sequence of increasing stellar metallicity, age and stellar mass at increasing 4000AA-break strength (D4000). For galaxies of intermediate mass, stronger Balmer absorption at fixed D4000 is associated with higher metallicity and younger age. We investigate how stellar metallicity and age depend on total galaxy stellar mass. Low-mass galaxies are typically young and metal-poor, massive galaxies old and metal-rich, with a rapid transition between these regimes over the stellar mass range 3x10^9<M/Msun<3x10^10. Both high- and low-concentration galaxies follow these relations, but there is a large dispersion in stellar metallicity at fixed stellar mass, especially for low-concentration galaxies of intermediate mass. Despite the large scatter, the relation between stellar metallicity and stellar mass is similar to the correlation between gas-phase oxygen abundance and stellar mass for star-forming galaxies. [abriged]Comment: 22 pages, 14 figures, accepted for publication on MNRAS, data available at http://www.mpa-garching.mpg.de/SDSS

    Stellar Ages and Metallicities of Central and Satellite Galaxies: Implications for Galaxy Formation and Evolution

    Full text link
    Using a large SDSS galaxy group catalogue, we study how the stellar ages and metallicities of central and satellite galaxies depend on stellar mass and halo mass. We find that satellites are older and metal-richer than centrals of the same stellar mass. In addition, the slopes of the age-stellar mass and metallicity-stellar mass relations are found to become shallower in denser environments. This is due to the fact that the average age and metallicity of low mass satellite galaxies increase with the mass of the halo in which they reside. A comparison with the semi-analytical model of Wang et al. (2008) shows that it succesfully reproduces the fact that satellites are older than centrals of the same stellar mass and that the age difference increases with the halo mass of the satellite. This is a consequence of strangulation, which leaves the stellar populations of satellites to evolve passively, while the prolonged star formation activity of centrals keeps their average ages younger. The resulting age offset is larger in more massive environments because their satellites were accreted earlier. The model fails, however, in reproducing the halo mass dependence of the metallicities of low mass satellites, yields metallicity-stellar mass and age-stellar mass relations that are too shallow, and predicts that satellite galaxies have the same metallicities as centrals of the same stellar mass, in disagreement with the data. We argue that these discrepancies are likely to indicate the need to (i) modify the recipes of both supernova feedback and AGN feedback, (ii) use a more realistic description of strangulation, and (iii) include a proper treatment of the tidal stripping, heating and destruction of satellite galaxies. [Abridged]Comment: 20 pages, 12 figures, submitted for publication in MNRA

    Uno studio archeologico delle galassie negli ultimi 7 miliardi di anni

    Get PDF
    New observations performed with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the Magellan telescope of the Las Campanas Observatory have made it possible to determine the average age and the chemical composition of the stellar populations in the galaxies belonging to the Universe of 7 billion years ago. Through these observations it is possible to study how these physical properties changed over time and identify the ways in which the galaxies may have evolved through to the present Universe.Nuove osservazioni con lo spettrografo IMACS sul telescopio Magellan dell’Osservatorio Las Campanas hanno permesso di determinare l’età media e la composizione chimica delle popolazioni stellari in galassie appartenenti all’Universo di 7 miliardi di anni fa. Tramite queste osservazioni è possibile studiare la variazione di queste proprietà fisiche nel tempo e individuare i possibili percorsi evolutivi delle galassie fino all’Universo attuale

    A merger in the dusty, z=7.5z=7.5 galaxy A1689-zD1?

    Get PDF
    The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources (z=7.5z=7.5). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). A1689-zD1 is also unusual among high-redshift dust emitters as it is a sub-L* galaxy and is therefore a good prospect for the detection of gaseous ISM in a more typical galaxy at this redshift. We observed A1689-zD1 with ALMA in bands 6 and 7 and with the Green Bank Telescope (GBT) in band QQ. To study the structure of A1689-zD1, we map the mm thermal dust emission and find two spatial components with sizes about 0.4−1.70.4-1.7\,kpc (lensing-corrected). The rough spatial morphology is similar to what is observed in the near-infrared with {\it HST} and points to a perturbed dynamical state, perhaps indicative of a major merger or a disc in early formation. The ALMA photometry is used to constrain the far-infrared spectral energy distribution, yielding a dust temperature (Tdust∼35T_{\rm dust} \sim 35--4545\,K for β=1.5−2\beta = 1.5-2). We do not detect the CO(3-2) line in the GBT data with a 95\% upper limit of 0.3\,mJy observed. We find a slight excess emission in ALMA band~6 at 220.9\,GHz. If this excess is real, it is likely due to emission from the [CII] 158.8\,μ\mum line at z[CII]=7.603z_{\rm [CII]} = 7.603. The stringent upper limits on the [CII]/LFIRL_{\rm FIR} luminosity ratio suggest a [CII] deficit similar to several bright quasars and massive starbursts.Comment: 9 pages, accepted to MNRAS, in pres

    Stellar mass as the "glocal" driver of galaxies' stellar population properties

    Get PDF
    The properties of the stellar populations in a galaxy are known to correlate with the amount and the distribution of stellar mass. We take advantage of the maps of light-weighted mean stellar age Agewr and metallicity Z*wr for a sample of 362 galaxies from the integral-field spectroscopic survey CALIFA (summing up to >600,000 individual regions of approximately 1 kpc linear size), produced in our previous works, to investigate how these local properties react to the local stellar-mass surface density mu* and to the global total stellar mass M* and mean stellar-mass surface density e. We establish the existence of i) a dual mu*-Agewr relation, resulting in a young sequence and an old ridge, and ii) a mu*-Z*wr relation, overall independent of the age of the regions. The global mass parameters (M* and, possibly secondarily, e) determine the distribution of mu* in a galaxy and set the maximum attainable mu*, which increases with M*. M* affects the shape and normalization of the local relations up to a threshold mass of ∼1010.3\sim 10^{10.3} MSun, above which they remain unchanged. We conclude that stellar mass is a "glocal" (i.e. simultaneously global and local) driver of the stellar population properties. We consider how the local and global mass-age and mass-metallicity relations are connected, and in particular discuss how it is possible, from a single local relation, to produce two different global mass-metallicity relations for quiescent and star-forming galaxies respectively, as reported in the literature. Structural differences in these two classes of galaxies are key to explain the duality in global scaling relations and appear as essential in modelling the baryonic cycle of galaxies

    A dynamical view on stellar metallicity gradient diversity across the Hubble sequence with CALIFA

    Get PDF
    We analyze radial stellar metallicity and kinematic profiles out to 1Re in 244 CALIFA galaxies ranging from morphological type E to Sd, to study the evolutionary mechanisms of stellar population gradients. We find that linear metallicity gradients exhibit a clear correlation with galaxy morphological type - with early type galaxies showing the steepest gradients. We show that the metallicity gradients simply reflect the local mass-metallicity relation within a galaxy. This suggests that the radial stellar population distribution within a galaxys effective radius is primarily a result of the \emph{in-situ} local star formation history. In this simple picture, the dynamically derived stellar surface mass density gradient directly predicts the metallicity gradient of a galaxy. We show that this correlation and its scatter can be reproduced entirely by using independent empirical galaxy structural and chemical scaling relations. Using Schwarzschild dynamical models, we also explore the link between a galaxys local stellar populations and their orbital structures. We find that galaxies angular momentum and metallicity gradients show no obvious causal link. This suggests that metallicity gradients in the inner disk are not strongly shaped by radial migration, which is confirmed by the lack of correlation between the metallicity gradients and observable probes of radial migration in the galaxies, such as bars and spiral arms. Finally, we find that galaxies with positive metallicity gradients become increasingly common towards low mass and late morphological types - consistent with stellar feedback more efficiently modifying the baryon cycle in the central regions of these galaxies.Comment: 20 pages, 13 figure
    • …
    corecore