6,610 research outputs found
Self-similarities in the frequency-amplitude space of a loss-modulated CO laser
We show the standard two-level continuous-time model of loss-modulated CO
lasers to display the same regular network of self-similar stability islands
known so far to be typically present only in discrete-time models based on
mappings. For class B laser models our results suggest that, more than just
convenient surrogates, discrete mappings in fact could be isomorphic to
continuous flows.Comment: (5 low-res color figs; for ALL figures high-res PDF:
http://www.if.ufrgs.br/~jgallas/jg_papers.html
Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air
The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets
Anomalous density dependence of static friction in sand
We measured experimentally the static friction force on the surface of
a glass rod immersed in dry sand. We observed that is extremely sensitive
to the closeness of packing of grains. A linear increase of the grain-density
yields to an exponentially increasing friction force. We also report on a novel
periodicity of during gradual pulling out of the rod. Our observations
demonstrate the central role of grain bridges and arches in the macroscopic
properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.
Patterns and Collective Behavior in Granular Media: Theoretical Concepts
Granular materials are ubiquitous in our daily lives. While they have been a
subject of intensive engineering research for centuries, in the last decade
granular matter attracted significant attention of physicists. Yet despite a
major efforts by many groups, the theoretical description of granular systems
remains largely a plethora of different, often contradicting concepts and
approaches. Authors give an overview of various theoretical models emerged in
the physics of granular matter, with the focus on the onset of collective
behavior and pattern formation. Their aim is two-fold: to identify general
principles common for granular systems and other complex non-equilibrium
systems, and to elucidate important distinctions between collective behavior in
granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb
pdf) avaliable at
http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community
responce is appreciated. Comments/suggestions send to [email protected]
The D0 Run IIb Luminosity Measurement
An assessment of the recorded integrated luminosity is presented for data
collected with the D0 detector at the Fermilab Tevatron Collider from June 2006
to September 2011 (Run IIb). In addition, a measurement of the effective cross
section for inelastic interactions, also referred to as the luminosity
constant, is reported. This measurement incorporates new features that lead to
a substantial improvement in the precision of the result. A luminosity constant
of \sigma_{LM} = 48.3\pm1.9\pm0.6 mb is obtained, where the first uncertainty
is due to the accuracy of the inelastic cross section used by both CDF and D0,
and the second uncertainty is due to D0 sources. The recorded luminosity for
the highest E_T jet trigger is L_rec = 9.2 \pm 0.4 fb^{-1}, with a relative
uncertainty of 4.3%.Comment: 20 pages, 23 figure
Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam
While designed primarily for X-ray imaging applications, the Medipix3 ASIC
can also be used for charged-particle tracking. In this work, results from a
beam test at the CERN SPS with irradiated and non-irradiated sensors are
presented and shown to be in agreement with simulation, demonstrating the
suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure
Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams
hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed
Conceptual Development About Motion and Force in Elementary and Middle School Students
Methods of physics education research were applied to find what kinds of changes in 4th, 6th, and 8th grade student understanding of motion can occur and at what age. Such findings are necessary for the physics community to effectively discharge its role in advising and assisting pre-college physics education. Prior to and after instruction the students were asked to carefully describe several demonstrated accelerated motions. Most pre-instruction descriptions were of the direction of motion only. After instruction, many more of the students gave descriptions of the motion as continuously changing. Student responses to the diagnostic and to the activity materials revealed the presence of a third “snapshot” view of motion not discussed in the literature. The 4th and 6th grade students gave similar pre-instructional descriptions of the motion, but the 4th grade students did not exhibit the same degree of change in descriptions after instruction. Our findings suggest that students as early as 6th grade can develop changes in ideas about motion needed to construct Newtonian-like ideas about force. Students’ conceptions about motion change little under traditional physics instruction from these grade levels through college level
Study of a class of non-polynomial oscillator potentials
We develop a variational method to obtain accurate bounds for the
eigenenergies of H = -Delta + V in arbitrary dimensions N>1, where V(r) is the
nonpolynomial oscillator potential V(r) = r^2 + lambda r^2/(1+gr^2), lambda in
(-infinity,\infinity), g>0. The variational bounds are compared with results
previously obtained in the literature. An infinite set of exact solutions is
also obtained and used as a source of comparison eigenvalues.Comment: 16 page
Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box
Size segregation of granular mixtures which are almost completely packed in a
rotating drum is discussed with an effective simulation and a brief analysis.
Instead of a 3D drum, we simulate 2D rotating thin box which is almost
completely packed with granular mixtures. The phase inversion of radially
segregated pattern which was found in a 3D experiment are qualitatively
reproduced with this simulation, and a brief analysis is followed. Moreover in
our simulation, a global convection appears after radial segregation pattern is
formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M
- …