347 research outputs found

    Near-infrared mapping of spiral barred galaxies

    Get PDF
    In external galaxies, near-infrared emission originates from stellar populations, hot dust, free-free emission from H+ regions, gaseous emission, non-thermal nucleus if any. Because of the low extinction compared to the visible, infrared wavelengths are useful to probe regions obscured by dust such as central parts where starburst phenomena can occur because of the large quantity of matter. The results presented were obtained with a 32 x 32 InSb charge injection device (CID) array cooled at 4K, at the f/36 cassegrain focus of the 3m60 Canada-France-Hawaii telescope with a spatial resolution of 0.5 inches per pixel. The objects presented are spiral barred galaxies mapped at J(1.25 microns), H(1.65 microns) and K(2.2 microns). The non-axisymetric potential due to the presence of a bar induces dynamical processes leading to the confinement of matter and peculiar morphologies. Infrared imaging is used to study the link between various components. Correlations with other wavelengths ranges and 2-colors diagrams ((J-H), (H-K)) lead to the identification of star forming regions, nucleus. Maps show structures connected to the central core. The question is, are they flowing away or toward the nucleus. Observations of M83 lead to several conclusions. The star forming region, detected in the visible and the infrared cannot be very compact and must extend to the edge of the matter concentration. The general shape of the near-infrared emission and the location of radio and 10 micron peaks suggest the confinement of matter between the inner Linblad resonances localized from CO measurements about 100 and 400 pc. The distribution of color indices in the arc from southern part to the star forming region suggests an increasing amount of gas and a time evolution eventually triggered by supernova explosions. Close to the direction of the bar, a bridge-like structure connects the arc to the nucleus with peculiar color indices. Perhaps, this structure can be linked to a height velocity component seen in UV and we can attribute it to a jet and/or a matter flow along the bar toward the nucleus, fuelling it. NGC 1068 is the nearest Seyfert 2 galaxy. It has been a subject of many studies at all wavelengths. This object was mapped at J, H, K, L and M, and in polaro-imagery. Results are given

    Extended mid-infrared emission from VV 114: probing the birth of a ULIRG

    Full text link
    We present our 5-16 micron spectro-imaging observations of VV114, an infrared luminous early-stage merger, taken with the ISOCAM camera on-board ISO. We find that only 40% of the mid-infrared (MIR) flux is associated with a compact nuclear region, while the rest of the emission originates from a rather diffuse component extended over several kpc. This is in stark contrast with the very compact MIR starbursts usually seen in luminous infrared galaxies. A secondary peak of MIR emission is associated with an extra-nuclear star forming region which displays the largest Halpha equivalent width in the whole system. Comparing our data with the distribution of the molecular gas and cold dust, as well as with radio observations, it becomes evident that the conversion of molecular gas into stars can be triggered over large areas at the very first stages of an interaction. The presence of a very strong continuum at 5 microns in one of the sources indicates that an enshrouded active galactic nucleus may contribute to 40% of its MIR flux. We finally note that the relative variations in the UV to radio spectral properties between the merging galaxies provide evidence that the extinction-corrected star formation rate of similar objects at high z, such as those detected in optical deep surveys, can not be accurately derived from their rest-frame UV properties.Comment: 14 pages, 5 figures, accepted for publication in A&

    Transition from Free to Interacting Composite Fermions away from ν\nu=1/3

    Get PDF
    Spin excitations from a partially populated composite fermion level are studied above and below ν=1/3\nu=1/3. In the range 2/7<ν<2/52/7<\nu<2/5 the experiments uncover significant departures from the non-interacting composite fermion picture that demonstrate the increasing impact of interactions as quasiparticle Landau levels are filled. The observed onset of a transition from free to interacting composite fermions could be linked to condensation into the higher order states suggested by transport experiments and numerical evaluations performed in the same filling factor range.Comment: 4 pages, 5 figures, to appear in PR

    Mid-infrared observations of the ultraluminous galaxies IRAS14348-1447, IRAS19254-7245, and IRAS23128-5919

    Full text link
    We present a study of the three ultraluminous infrared galaxies IRAS14348-1447, IRAS19254-7245, and IRAS23128-5919, based on mid-infrared (MIR) spectro-imaging (5-18microns) observations performed with ISOCAM. We find that the MIR emission from each system, which consists of a pair of interacting late type galaxies, is principally confined to the nuclear regions with diameters of 1-2kpc and can account for more than 95% of their IRAS 12micron flux. In each interacting system, the galaxy hosting an active galactic nucleus (AGN) dominates the total spectrum and shows stronger dust continuum (12-16microns) relative to the Unidentified Infrared Band (UIB) emission (6-9microns), suggestive of its enhanced radiation field. The MIR dominant galaxy also exhibits elevated 15micron/Halpha and 15micron/K ratios which trace the high extinction due to the large quantities of molecular gas and dust present in its central regions. Using only diagnostics based on our mid-infrared spectra, we can establish that the Seyfert galaxy IRAS19254-7245 exhibits MIR spectral features of an AGN while the MIR spectrum of the Seyfert (or LINER) member of IRAS23128-5919 is characteristic of dust emission principally heated by star forming regions.Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 9 figure
    corecore