1,877 research outputs found

    Time-domain Study of the Young Massive Cluster Westerlund 2 with the Hubble Space Telescope. I

    Get PDF
    Time-domain studies of pre-main-sequence (PMS) stars have long been used to investigate star properties during their early evolutionary phases and to trace the evolution of circumstellar environments. Historically these studies have been confined to the nearest, low-density, star-forming regions. We used the Wide Field Camera 3 on board the Hubble Space Telescope to extend, for the first time, the study of PMS variability to one of the few young massive clusters in the Milky Way, Westerlund 2. Our analysis reveals that at least one-third of the intermediate- and low-mass PMS stars in Westerlund 2 are variable. Based on the characteristics of their light curves, we classified ~11% of the variable stars as weak-line T Tauri candidates, ~52% as classical T Tauri candidates, ~5% as dippers, and ~26% as bursters. In addition, we found that 2% of the stars below 6 M ⊙ (~6% of the variables) are eclipsing binaries, with orbital periods shorter than 80 days. The spatial distribution of the different populations of variable PMS stars suggests that stellar feedback and UV radiation from massive stars play an important role in the evolution of circumstellar and planetary disks

    Survey of H-alpha emission from thirty nearby dwarf galaxies

    Full text link
    Measurements of the H-alpha flux from 30 neighboring dwarf galaxies are presented. After correction for absorption, these fluxes are used to estimate the star formation rate (SFR). The SFR for 18 of the galaxies according to the H-alpha emission are compared with estimates of the SFR from FUV magnitudes obtained with the GALEX telescope. These are in good agreement over the range log[SFR] = [-3,0]M sun/yr.Comment: 18 pages, 10 figures, 3 table

    Prognostic ability of a panel of immunohistochemistry markers – retailoring of an 'old solution'

    Get PDF
    An urgent requirement exists for new prognostic and predictive assays in breast cancer. Despite the development of high-throughput technologies such as DNA microarrays, it would now appear that immunohistochemistry (IHC) may play an increasingly important role in the clinical management of breast cancer. In this editorial, the authors discuss the potential prognostic ability of a panel of IHC markers, and question whether this well-established assay technology may in fact allow for improved prognostic and predictive tests in breast cancer

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Mixed Ionic-Electronic Conduction in HTcS

    Full text link

    Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design.

    Get PDF
    BACKGROUND: The detection of occult bone metastases is a key factor in determining the management of patients with renal cell carcinoma (RCC), especially when curative surgery is considered. This prospective study assessed the sensitivity of (18)F-labelled sodium fluoride in conjunction with positron emission tomography/computed tomography ((18)F-NaF PET/CT) for detecting RCC bone metastases, compared with conventional imaging by bone scintigraphy or CT. PATIENTS AND METHODS: An adaptive two-stage trial design was utilized, which was stopped after the first stage due to statistical efficacy. Ten patients with stage IV RCC and bone metastases were imaged with (18)F-NaF PET/CT and (99m)Tc-labelled methylene diphosphonate ((99m)Tc-MDP) bone scintigraphy including pelvic single photon emission computed tomography (SPECT). Images were reported independently by experienced radiologists and nuclear medicine physicians using a 5-point scoring system. RESULTS: Seventy-seven lesions were diagnosed as malignant: 100% were identified by (18)F-NaF PET/CT, 46% by CT and 29% by bone scintigraphy/SPECT. Standard-of-care imaging with CT and bone scintigraphy identified 65% of the metastases reported by (18)F-NaF PET/CT. On an individual patient basis, (18)F-NaF PET/CT detected more RCC metastases than (99m)Tc-MDP bone scintigraphy/SPECT or CT alone (P = 0.007). The metabolic volumes, mean and maximum standardized uptake values (SUV mean and SUV max) of the malignant lesions were significantly greater than those of the benign lesions (P < 0.001). CONCLUSIONS: (18)F-NaF PET/CT is significantly more sensitive at detecting RCC skeletal metastases than conventional bone scintigraphy or CT. The detection of occult bone metastases could greatly alter patient management, particularly in the context when standard-of-care imaging is negative for skeletal metastases.This work was supported by Cancer Research UK [grant number C19212/A16628]. The authors also received research support from the National Institute of Health Research Cambridge Biomedical Research Centre, Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester, and the Cambridge Experimental Cancer Medicine Centre. The research has also been partly funded by a generous donation from the family and friends of a patient.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/annonc/mdv28
    corecore