20 research outputs found

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Full text link
    peer reviewedBackground: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non–oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non–OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction. © 202

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass

    No full text
    We fabricate thin epitaxial crystal silicon solar cells on display glass and fused silica substrates overcoated with a silicon seed layer. To confirm the quality of hot wire chemical vapor deposition epitaxy, we grow a 2 amp; 956;m thick absorber on a 100 monocrystalline Si layer transfer seed on display glass and achieve 6.5 efficiency with an open circuit voltage VOC of 586mV without light trapping features. This device enables the evaluation of seed layers on display glass. Using polycrystalline seeds formed from amorphous silicon by laser induced mixed phase solidification MPS and electron beam crystallization, we demonstrate 2.9 , 476mV MPS and 4.1 , 551mV electron beam crystallization solar cells. Grain boundaries likely limit the solar cell grown on the MPS seed layer, and we establish an upper bound for the grain boundary recombination velocity SGB of 1.6x104 cm
    corecore