975 research outputs found

    Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    Get PDF
    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M

    Capabilities of macroscopic forming simulation for large-scale forming processes of dry and impregnated textiles

    Get PDF
    Forming of continuously fibre-reinforced polymers (CoFRP) has a significant impact on the structural performance of composite components, underlining the importance of forming simulation for CoFRP product development processes. For an integrated development of industrial composite components, efficient forming simulation methods are in high demand. Application-oriented method development is particularly crucial for industrial needs, where large and complex multi-layer components are manufactured, commercial FE software is used, and yet high prediction accuracy is required. To meet industrial demands, this contribution gives an insight in macroscopic forming simulation approaches that utilize the FE software Abaqus in combination with user-defined material models and finite elements. Three CoFRP forming technologies are considered, which are in industrial focus due to their suitability for mass production: textile forming of dry unidirectional non-crimp fabrics (UD-NCF), thermoforming of pre-impregnated UD tapes and wet compression moulding (WCM). In addition to the highly anisotropic, large-strain material behaviour that composite forming processes have in common, the three process technologies face various process-specific modelling challenges. UD-NCFs require material models that capture the deformation behaviour and the slippage of the stitching. Thermoforming of UD tapes is highly rate- and temperature-dependent, calling for rheological membrane and bending modelling. Moreover, a thermomechanical approach including crystallisation kinetics enables the prediction of potential phase-transition during forming and resulting defects in the semi-crystalline thermoplastic matrix. For simultaneous forming and infiltration in wet compression moulding, a finite Darcy-Progression-Element is superimposed with the membrane and shell elements for forming simulation, capturing infiltration-dependent material properties. The three outlined technologies illustrate the complexity and importance of further simulation method development to support future process development

    Relativistic Description of Exclusive Semileptonic Decays of Heavy Mesons

    Get PDF
    Using quasipotential approach, we have studied exclusive semileptonic decays of heavy mesons with the account of relativistic effects. Due to more complete relativistic description of the ss quark more precise expressions for semileptonic form factors are obtained. Various differential distributions in exclusive semileptonic decays of heavy mesons are calculated. It is argued that consistent account of relativistic effects and HQET motivated choice of the parameters of quark-antiquark potential allow to get reliable value for the ratio A2(0)/A1(0)A_2(0)/A_1(0) in the DKlνlD\to K^*l\nu_l decay as well as the ratio~Γ(DKlνl)/Γ(DKlνl)\Gamma(D\to K^*l\nu_l)/\Gamma(D\to Kl\nu_l). All calculated branching ratios are in accord with available experimental data.Comment: 18 pages, LATEX, 2 figures inclosed + 4 Postscript figure

    The impact of draping effects on the stiffness and failure behavior of unidirectional non-crimp fabric fiber reinforced composites

    Get PDF
    Unidirectional non-crimp fabrics (UD-NCF) are often used to exploit the lightweight potential of continuous fiber reinforced plastics (CoFRP). During the draping process, the UD-NCF fabric can undergo large deformations that alter the local fiber orientation, the local fiber volume content (FVC) and create local fiber waviness. Especially the FVC is affected and has a large impact on the mechanical properties. This impact, resulting from different deformation modes during draping, is in general not considered in composite design processes. To analyze the impact of different draping effects on the mechanical properties and the failure behavior of UD-NCF composites, experimental results of reference laminates are compared to the results of laminates with specifically induced draping effects, such as non-constant FVC and fiber waviness. Furthermore, an analytical model to predict the failure strengths of UD laminates with in-plane waviness is introduced. The resulting stiffness and strength values for different FVC or amplitude to wavelength configurations are presented and discussed. In addition, failure envelopes based on the PUCK failure criterion for each draping effect are derived, which show a clear specific impact on the mechanical properties. The findings suggest that each draping effect leads to a “new fabric” type. Additionally, analytical models are introduced and the experimental results are compared to the predictions. Results indicate that the models provide reliable predictions for each draping effect. Recommendations regarding necessary tests to consider each draping effect are presented. As a further prospect the resulting stiffness and strength values for each draping effect can be used for a more accurate prediction of the structural performance of CoFRP parts

    Properties of heavy quarkonia and B_c mesons in the relativistic quark model

    Get PDF
    The mass spectra and electromagnetic decay rates of charmonium, bottomonium and B_c mesons are comprehensively investigated in the relativistic quark model. The presence of only heavy quarks allows the expansion in powers of their velocities. All relativistic corrections of order v^2/c^2, including retardation effects and one-loop radiative corrections, are systematically taken into account in the computations of the mass spectra. The obtained wave functions are used for the calculation of radiative magnetic dipole (M1) and electric dipole (E1) transitions. It is found that relativistic effects play a substantial role. Their account and the proper choice of the Lorentz structure of the quark-antiquark interaction in a meson is crucial for bringing theoretical predictions in accord with experimental data. A detailed comparison of the calculated decay rates and branching fractions with available experimental data for radiative decays of charmonium and bottomonium is presented. The possibilities to observe the currently missing spin-singlet S and P states as well as D states in bottomonium are discussed. The results for B_c masses and decays are compared with other quark model predictions.Comment: 31 pages, 2 figures, minor correction

    LCG MCDB -- a Knowledgebase of Monte Carlo Simulated Events

    Get PDF
    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project

    Searching for the Layered Structure of Space at the LHC

    Full text link
    Alignment of the main energy fluxes along a straight line in a target plane has been observed in families of cosmic ray particles detected in the Pamir mountains. The fraction of events with alignment is statistically significant for families with superhigh energies and large numbers of hadrons. This can be interpreted as evidence for coplanar hard-scattering of secondary hadrons produced in the early stages of the atmospheric cascade development. This phenomenon can be described within the recently proposed "crystal world," with latticized and anisotropic spatial dimensions. Planar events are expected to dominate particle collisions at a hard-scattering energy exceeding the scale \Lambda_3 at which space transitions from 3D \rightleftharpoons 2D. We study specific collider signatures that will test this hypothesis. We show that the energy-spectrum of Drell-Yan scattering and the parton momenta sum rule are significantly modified in this framework. At the LHC, two jet and three jet events are necessarily planar, but four jet events can test the hypothesis. Accordingly, we study in a model-independent way the 5\sigma discovery reach of the ATLAS and CMS experiments for identifying four jets coplanarities. For the extreme scenario in which all pp \to 4 jet scattering processes become coplanar above \Lambda_3, we show that with an integrated luminosity of 10(100) fb^{-1} the LHC experiments have the potential to discover correlations between jets if \Lambda_3 \alt 1.25(1.6) TeV.Comment: To be published in Phys. Rev.

    Spin interference in silicon three-terminal one-dimensional rings

    Full text link
    We present the first findings of the spin transistor effect in the Rashba gate-controlled ring embedded in the p-type self-assembled silicon quantum well that is prepared on the n-type Si (100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the value of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. Firstly, the amplitude and phase sensitivity of the 0.7(2e^2/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in the one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Secondly, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations.Comment: 8 pages, 5 figure

    The driver’s visual perception research to analyze pedestrian safety at twilight

    Get PDF
    Road traffic movement at nightfall (twilight) is characterizing by a reduction of light time of the day and the rapid nightfall onset, thus the driver's eyes have less time to adapt to rapid sudden changes in illumination. The visual perception and the reaction time of the driver in conditions when pedestrians appear in nightfall conditions on the street and road network in a city is considered in the paper. Researched was conducted in uncontrolled pedestrian crossings in nightfall conditions on Ukrainian roads. Regularities of the vehicle’s driver and pedestrians’ interaction in nightfall conditions are obtained. Road traffic accidents occurrence probabilities at the twilight time considering the driver’s reaction time and the car’s movement parameters was analyzed. As a result, a model for estimating the variation the reaction time of the driver when a pedestrian appears in the nightfall (twilight) conditions was calibrated
    corecore