77 research outputs found

    Parity effect in a mesoscopic Fermi gas

    Get PDF
    We develop a quantitative analytic theory that accurately describes the odd-even effect observed experimentally in a one-dimensional, trapped Fermi gas with a small number of particles [G. Z\"urn et al., Phys. Rev. Lett. 111, 175302 (2013)]. We find that the underlying physics is similar to the parity effect known to exist in ultrasmall mesoscopic superconducting grains and atomic nuclei. However, in contrast to superconducting nanograins, the density (Hartree) correction dominates over the superconducting pairing fluctuations and leads to a much more pronounced odd-even effect in the mesoscopic, trapped Fermi gas. We calculate the corresponding parity parameter and separation energy using both perturbation theory and a path integral framework in the mesoscopic limit, generalized to account for the effects of the trap, pairing fluctuations, and Hartree corrections. Our results are in an excellent quantitative agreement with experimental data and exact diagonalization. Finally, we discuss a few-to-many particle crossover between the perturbative mesoscopic regime and non-perturbative many-body physics that the system approaches in the thermodynamic limit.Comment: 7 pages, 1 figur

    Magnetic end-states in a strongly-interacting one-dimensional topological Kondo insulator

    Get PDF
    Topological Kondo insulators are strongly correlated materials, where itinerant electrons hybridize with localized spins giving rise to a topologically non-trivial band structure. Here we use non-perturbative bosonization and renormalization group techniques to study theoretically a one-dimensional topological Kondo insulator. It is described as a Kondo-Heisenberg model where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel - a strongly correlated version of the prototypical Tamm-Shockley model. We derive and solve renormalization group equations at two-loop order in the Kondo parameter, and find that, at half-filling, the charge degrees of freedom in the Hubbard chain acquire a Mott gap, even in the case of a non-interacting conduction band (Hubbard parameter U=0U=0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-11 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/21/2 end states for chains with open boundary conditions. Our analysis allows to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.Comment: 13 pages, 2 figures, 1 appendix. New version with typos correcte
    corecore