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We develop a quantitative analytic theory that accurately describes the odd-even effect observed experimentally
in a one-dimensional, trapped Fermi gas with a small number of particles [G. Zürn et al., Phys. Rev. Lett. 111,
175302 (2013)]. We find that the underlying physics is similar to the parity effect known to exist in ultrasmall
mesoscopic superconducting grains and atomic nuclei. However, in contrast to superconducting nanograins,
the density (Hartree) correction dominates over the superconducting pairing fluctuations and leads to a much
more pronounced odd-even effect in the mesoscopic, trapped Fermi gas. We calculate the corresponding parity
parameter and separation energy using both perturbation theory and a path integral framework in the mesoscopic
limit, generalized to account for the effects of the trap, pairing fluctuations, and Hartree corrections. Our results
are in an excellent quantitative agreement with experimental data and exact diagonalization. Finally, we discuss
a few-particle to many-particle crossover between the perturbative mesoscopic regime and nonperturbative
many-body physics that the system approaches in the thermodynamic limit.
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Our understanding of quantum systems is usually firmly
rooted in either a few-body picture, where exact solutions of
a few-particle Schrödinger equation exist, or a many-body
picture, where the system can be described in a (quantum) sta-
tistical framework. In between these two limits lies the meso-
scopic regime, where finite particle number and confinement
have a strong effect on the system’s properties. Mesoscopic
systems occur naturally, for example, in nuclear physics,
where a finite number of protons and neutrons form an atomic
nucleus, or they can be engineered, such as in semiconducting
quantum dots [1,2] or superconducting nanograins [3–6].
For attractively interacting mesoscopic Fermi systems, a key
effect is that the ground-state energy is not a strictly convex
function of the particle number, but the interaction can cause
some configurations to have lower binding energy (and thus
enhanced stability) relative to others [7,8]. For example, this
implies an enhanced stability of nuclei with a “magic number”
of constituents. A related effect exists for superconducting
nanograins [7,9,10]: the binding energy of systems with an
even number of spin-up and spin-down fermions (even-number
parity) is enhanced compared to odd particle number systems
with an unpaired fermion (odd-number parity). This parity
effect is a hallmark of mesoscopic superconductor systems and
can be quantified by the so-called parity or Matveev-Larkin
parameter [7,9,10], which denotes the excess energy of an
odd-parity state relative to the mean of the neighboring fully
paired even-parity states:

�P = E2l+1 − 1
2 (E2l + E2l+2), (1)

where E2l+1 denotes the ground-state energy of a fermion sys-
tem with odd total particle number 2l + 1. For noninteracting
systems, the parity parameter (1) vanishes, and it is positive if
there is a parity effect.

In this Rapid Communication, we study mesoscopic one-
dimensional Fermi quantum gases, and establish a rigorous
connection with well-known mesoscopic superconducting

systems. Our work is motivated by recent progress in quan-
tum gas experiments which can deterministically prepare
systems of few fermions in a harmonic one-dimensional
trap [11]. These systems were studied for repulsive [12]
and attractive [13] interactions and spin-balanced [13] and
spin-imbalanced configurations [14], and used to simulate
models of quantum magnetism [15–17]. Motivated by a recent
experiment [13], here we study a spin-balanced few-fermion
system with attractive interaction in a harmonic trap, i.e.,
ensembles which contain an equal number of spin-up and
spin-down fermions for a total even particle number, and
a single unpaired fermion for an odd total particle number.
In Ref. [13], following the preparation of an ensemble with
a definite particle number, the trapping potential was tilted
for a variable time, allowing fermions to tunnel out of the
trap. From the tunneling times obtained in the experiment, a
separation energy was extracted [13,18–20], which is defined
as

Esep(N ) = (
EN − E0

N

)− (
EN−1 − E0

N−1

)
, (2)

where EN (E0
N ) is the ground-state energy of the interacting

(noninteracting) system with N particles. At zero temperature,
E0

N is obtained by filling the lowest harmonic oscillator levels
up to the Fermi level: for even total particle number 2l, the
states j = 0, . . . ,l − 1 are occupied by pairs of spin-up and
spin-down fermions. For odd total particle number 2l + 1, the
level l contains an additional unpaired fermion. The parity
effect is manifested in the separation energy in the form of an
odd-even oscillation, where the separation energy of an odd
particle number state is smaller than the separation energy
of an even particle number state. The experiment [13] has
been analyzed theoretically using exact diagonalization for
small particle number [21–23]. However, for larger number
of particles, exact diagonalization is beyond computational
reach and different theoretical approaches are necessary.
Recent numerical works compute ground-state properties
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using Monte Carlo methods for even fermion number up to
N = 20 [24] and coupled-cluster methods for up to N =
80 [25,26]. In this paper, we employ analytical methods,
which allow a direct physical interpretation of the experimental
results and provide complementary information to numerical
works. Pairing in higher dimensions has been considered
in [27–30].

In the following, we analyze the mesoscopic pairing prob-
lem, focusing on the weak-interaction limit which corresponds
to the experimental situation [13]. The parity parameter takes
a fundamentally distinct form in the few-body and the many-
body limits, interpolating between a simple perturbative form
and a manifestly nonperturbative many-body expression. We
estimate a critical particle number which marks the crossover
between the mesoscopic and the macroscopic regime, finding
that this quantity scales exponentially with the interaction
strength, which suggests that the mesoscopic description
persists over a wide range of particle number. Our theory is
in accurate quantitative agreement with the experiment [13]
and provides a theoretical framework to study the mesoscopic
regime where N � 1, which is of fundamental interest to un-
derstand the emergence of superfluidity and superconductivity
in physical systems.

The Hamiltonian of a two-component Fermi gas in one
dimension is (we set � = 1)

H =
∫

dx

[∑
σ

ψ†
σ

(
− ∂2

x

2m
+ V (x)

)
ψσ − g1ψ

†
↑ψ

†
↓ψ↓ψ↑

]
.

(3)

Here, ψσ (x) annihilates a fermion at x with mass m and
spin σ , V (x) = mω2x2/2 is the harmonic trapping potential
with frequency ω, and g1 > 0 is related to the effective
attractive scattering length a1 via g1 = 2/ma1. We write the
continuum model (3) in an oscillator basis by expanding
the fermion operators in terms of simple harmonic oscillator
states ψσ (x) = ∑∞

j=0 cjσ φj (x), where φj (x) is a normalized
harmonic oscillator wave function with energy εj = ω(j +
1/2) and the operator cjσ annihilates a fermion with spin σ in
state j . The Hamiltonian in oscillator space is

H =
∑
jσ

εj c
†
jσ cjσ − g1l

−1
ho

∑
ijkl

wijklc
†
i↑c

†
j↓ck↓cl↑, (4)

where lho = √
1/mω denotes the harmonic oscillator length.

The coupling is now state dependent with an effective
interaction strength set by the overlap integral wijkl =
lho
∫

dx φiφjφkφl .
The theory in Eq. (3) can be solved in the absence of a

trapping potential [31–33]. In the thermodynamic limit of
a large system size L and large particle number N with
constant density n = N/L, the parity parameter corresponds
to half the spin gap, which for small interaction strength is
�P = 8

π
εF

√
γhom/πe−π2/2γhom [31], where γhom = mg1/n� 1

is the interaction strength of the homogeneous system. For the
trapped system, we expect that in the macroscopic limit of large
particle number, the parity parameter is (in the Thomas-Fermi
approximation) given by its minimum value at the trap center
where the local density is n0 = 2

√
N/πlho. This gives a parity

parameter [25]

�̃ = �P (N → ∞) = 4Nω

π

√
γ

π
e−π2/2γ , (5)

where the dimensionless interaction strength is

γ = πg1

2
√

Nωlho

. (6)

Equation (5) is a manifestly nonperturbative expression. Note
that despite the exponential suppression with γ , the parity
parameter �P scales with the Fermi energy. The macroscopic
limit is therefore characterized by �̃ � ω. By contrast, in
the mesoscopic limit of small particle number where �̃ �
ω, we expect simple perturbation theory to hold. This is
reminiscent of the Anderson criterion that marks the vanishing
of superconductivity if the level spacing of a grain is larger than
the bulk superconducting gap [34]. Clearly, the crossover from
a few to many particles is manifest in the parity parameter. The
expression (5) is extensive with particle number for constant γ ,
indicating that the crossover should be studied while keeping
γ fixed, i.e., imposing g1 ∼ √

N . In the following, we consider
the regime where γ � 1.

We proceed by analyzing the theory of Eq. (4) in the weak-
interaction limit to first order in the coupling g, applicable
to the mesoscopic regime �̃ � ω. To this leading order, the
ground-state energy is given by the expectation value of Eq. (4)
with respect to the noninteracting ground state. The separation
energy in Eq. (2) is thus

Esep(2l + 1) = −g1l
−1
ho

l−1∑
j=0

wjl, (7)

Esep(2l) = −g1l
−1
ho

l−1∑
j=0

wj (l−1), (8)

which corresponds to the interaction energy of a single fermion
in the outermost level interacting with the fermions in the lower
shells. In Eqs. (7) and (8), we define the diagonal coupling
wij = wijji , which can be determined in closed analytical
form [35]. Note that the perturbative interaction correction
is due to a mean-field shift of the single-particle energies. In
Fig. 1, we show the results of Eqs. (7) and (8) for the sepa-
ration energy along with the experimental measurement [13]
(black error bars) for an interaction strength g1/ωlho = 0.45,
which corresponds to the value used in the experiment [13].
Remarkably, the perturbative result provides a very accurate
description of the experimental data and is also in very good
agreement with results from a numerical exact diagonalization
of the Hamiltonian (4) (gray bars) [21]. The parity parameter
is

�P (�̃ � ω) = g1wll

2ωlho
ω ∼ �̃

√
ω

�̃
, (9)

where �̃ was defined in Eq. (5).
To gain insight into the physical mechanisms contributing

to the separation energy and the parity parameter, we assume
that for weak interactions, pairing takes place predominantly
within a harmonic oscillator shell, i.e., that the ground-state
properties can be described as excitations of paired levels:
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FIG. 1. (a) Separation energy as a function of particle number
N for interaction strength g1/lhoω = 0.45. The leading-order pertur-
bative solution of Eqs. (7) and (8) are indicated by blue circles and
the path integral fluctuation correction [Eq. (25)] by red diamonds.
Lines are a guide for the eye. Our result is in excellent agreement
with the experimental results by Zürn et al. [13], which are shown
as green error bars. In addition, we compare with results from
exact diagonalization [21], indicated by gray bars. (b) Orange line:
separation energy including only pairing interactions. The Hartree
density interaction is essential to fit the experimental data.

levels are either occupied by a pair of fermions or empty. This
implies that only the interaction terms that connect two levels
are retained: wij = wiijj = wijij = wijji [36]. The effective
Hamiltonian takes the form

Heff =
∑
nσ

εnc
†
nσ cnσ − g1l

−1
ho

∑
ij

wij c
†
i↑c

†
i↓cj↓cj↑

− g1l
−1
ho

∑
i 
=j

wij c
†
i↑c

†
j↓cj↓ci↑. (10)

There are two interaction terms: The first, which we call
the pairing term, destroys a pair of spin-up and spin-down
fermions in one oscillator level and creates a pair in a different
one. The second, which we refer to as the Hartree term, does
not create excitations but provides a density-dependent energy
shift to the single-particle levels (note that the perturbative
result is due to this type of interaction). A third possible
interaction term which exchanges the spin between two simply
occupied levels (Fock term) does not contribute to the balanced
system that we consider. Compared to pairing models used
for superconducting nanograins, the pairing interaction takes
a more complicated level-dependent form and involves an
additional Hartree term, which is in fact essential to describing
the experimental data of Ref. [13]. Figure 1(b) shows the
leading-order prediction for the separation energy only taking
into account the pairing interaction. As is apparent from
the figure, this prediction is in complete disagreement with
the experiment. Note that the while the Hartree term is

crucial for a correct description of the separation energy, it
does not affect the parity parameter of Eq. (9) to leading
order.

We obtain the ground-state energy for fixed particle number
from the limit [7]

lim
β→∞

�eff = min
N

(EN − μN ), (11)

where �eff is the free energy of the system obtained
from the grand canonical partition function Z = e−β�eff =
Tr e−β(Heff−μN) (where Tr denotes the trace over all many-
particle eigenstates), i.e., the grand canonical ensemble
projects onto a sector with definite particle number. However,
because of the parity effect of Eq. (1), the prescription (11)
only allows us to study configurations with even particle
number. Nevertheless, we can relate the ground-state energy
of a system with an odd number 2l + 1 of fermions to the
ground-state energy of a system with an even number 2l:
since the Hamiltonian (10) only couples fully occupied or
empty levels, the unpaired orbital of an odd-particle number
state does not participate in the interaction and decouples;
i.e., it effectively blocks a level from the Hilbert space.
Hence [7,9,10]

E2l+1 = εl+1 + E′
2l , (12)

where the energy E′
2l is computed without the blocked level l.

To analyze the effective theory of Eq. (10), we eliminate the
quartic interaction terms using a double Hubbard-Stratonovich
transformation in both the density and pairing channel, which
introduces three auxiliary fields: �i , �∗

i , and Ki . To this
end, we define the operators q0

i = 1
2 (c†i↑ci↑ + c

†
i↓ci↓), q+

i =
1
2 (c†i↑c

†
i↓ + ci↓ci↑), and q−

i = i
2 (c†i↑c

†
i↓ − ci↓ci↑). The Hamil-

tonian (10) takes the form H − μN = T − V+ − V− − V0,
where

T =
∑

j

ξ 0
j nj + g1l

−1
ho

2

∑
i

wii, (13)

Vα = g1l
−1
ho

∑
ij

wij q
α
i qα

j , (14)

with ξ 0
j = εj − μ. The last constant term in Eq. (13) arises

from a fermion commutator. Since the symmetric matrix
(w−1)ij /g1l

−1
ho is positive definite, the four-fermion interac-

tion terms can be reduced using three standard Hubbard-
Stratonovich transformations [37] for the operators qα

i , which
introduces conjugate real fields xα

i , where α = 0,±. Identify-
ing Kj = x0

j and �j = x+
j + ix−

j , the partition function reads

Z =
∫ [

1

N
∏
τ,i

D�i(τ )D�∗
i (τ )DKi(τ )

]
Tr[U�(β,0)]

× exp

⎡
⎣−βC −

∫ β

0
dτ

∑
ij

(w−1)ij
g1l

−1
ho

(�∗
i �j + KiKj )

⎤
⎦,

(15)
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where C = ∑
i(

g1

2lho
wii + ξi) with ξj = ξ 0

j − Kj ,N is the path
integral normalization

N =
∫ [∏

τ,i

D�i(τ )D�∗
i (τ )DKi(τ )

]

× exp

⎡
⎣−

∫ β

0
dτ

∑
ij

(w−1)ij
gl−1

ho

(�∗
i �j + KiKj )

⎤
⎦, (16)

and

U�(β,0) = Tτ exp

⎡
⎣−

∫ β

0
dτ
∑

j

χ
†
j

(
ξj −�j

−�∗
j −ξj

)
χj

⎤
⎦,

(17)

with χj = (cj↑,c
†
j↓)T [38].

We first consider the saddle-point approximation and
minimize the Euclidean action in Eq. (15) with respect to
Ki and �i . To this end, we first integrate out the fermions in
the partition function, which gives the effective action

Seff[{�j,Kj }]
= −

∑
j

tr ln
[− G−1

0,j

]

+
∫ β

0
dτ

⎧⎨
⎩
∑
ij

(w−1)ij
g1l

−1
ho

KiKj +
∑

i

ξi + g1

2

∑
i

wii

⎫⎬
⎭,

(18)

where the trace runs over Matsubara indices. The
matrix element of G0,j is given by 〈iωn|G0,j |iωn′ 〉 =
δn,n′G0,j (iωn) = δn,n′ [iωn − ξjσ3]−1 = δn,n′

iωn+ξj σ3

(iωn)2−ξ 2
j

. Varying

the action Seff in Eq. (18) with respect to Kj , �j , and
μ, we obtain the mean-field saddle-point solution defined
by Ki = g1

2lho

∑
j wij (1 − ξj

Ej
) and �i = g1ω

lho

∑
j wij

�j

2Ej
,

where Ej =
√

ξ 2
j + �2

j . The solution of these equations

determines the value of the Hartree field Ki and the gap �i

at the saddle point. Note that for an even particle number,
the saddle-point equations correspond to the solution of
a BCS pairing ansatz [35,39,40] with coherence factors
v2

i = 1 − u2
i = [1 − (ξi − Ki)/Ei]/2.

For small γ , the only saddle-point solution for �i cor-
responds to �i = 0, which implies vanishing off-diagonal
long-range order and absence of superfluidity in the weak-
coupling regime. This is the fluctuation-dominated regime
where �̃ defined in Eq. (5) is much smaller than the harmonic
oscillator level spacing ω [9]. The Hartree fields are given by
Ki = g1l

−1
ho

∑l−1
j=0 wij , which correspond to the single-particle

energy shift computed to leading order in perturbation theory
in g using the noninteracting ground state of the Fermi gas.
Using the identity in Eq. (11), the saddle-point contribution to
the ground-state energy of a system with an even N = 2l parti-
cle number is E2l = 2

∑l−1
j=0 εj − g1

∑l−1
i,j=0 wij + g1

2

∑
i wii .

Interestingly, this is not equal to the perturbative ground-state
energy. The last term arises from the commutator term in
Eq. (13). Despite the saddle point �i being zero, fluctuations
of the pairing field can make an important contribution, and
they are computed in the remainder of this paper. It turns out
that these pairing fluctuations contain a O(g1) correction that
cancels the last term in the saddle-point contribution to E2l

and reproduces the perturbative result.
To consider the effect of fluctuations around the saddle-

point solution. We write Ki → Ki + δKi and �i → δ�i , and
expand the action in Eq. (15) to second order in δKi and δ�i .
It turns out that there is no correction due to fluctuations of
the Hartree fields δKi . The partition function can be written
as Z = ZspZδ�, with Zsp the saddle-point contribution and
Zδ� = [det �]−1 the resulting quadratic functional integral in
δ�i , which can be exactly evaluated in terms of the functional
determinant [7,37]. To derive this result, we expand the pertur-
bation in Matsubara space δKi(τ ) = 1√

β

∑
iωn

e−iωnτ δKi(iωn),

and δ�i(τ ) = 1√
β

∑
iωn

e−iωnτ δ�i(iωn). The effective action
is

Seff[{θj }] = −
∑

j

tr ln
[− G−1

0,j

]−
∑

j

tr ln[1 − G0,jVj ]

+
∫ β

0
dτ

⎧⎨
⎩
∑
ij

(w−1)ij
g1l

−1
ho

[δ�∗
i δ�j + (Ki + δKi)

× (Kj + δKj )] +
∑

j

(ξj − δKj )

⎫⎬
⎭, (19)

where we separate a fluctuation part Vj from the Green’s
function G0,j . The matrix element of Vj is given by

〈iωn|Vj |iωn′ 〉 = Vj (iωn − iωn′ )

= − 1√
β

[δKj (iωn − iωn′ )σ3

+ δ�j (iωn − iωn′ )σ+

+ δ�∗
j (iωn − iωn′ )σ−]. (20)

Using

−
∑

j

tr ln[1 − G0,jVj ] =
∑

j

∞∑
n=0

1

j
tr[G0,jVj ]n, (21)

we expand the effective action (19) to second order in Vj .
The functional integral in terms of δKj and δ�j can then be
performed exactly. The partition function involving δKj reads

ZδK = 1

NK

∫ [∏
k

DδKk

]

× exp

⎡
⎣−

∑
iωn

∑
ij

(w−1)ij
g1l

−1
ho

δKi(−iωn)δKj (iωn) −
√

β
∑

i

δKi(iωm = 0)

⎛
⎝2

∑
j

(w−1)ij
g1l

−1
ho

Kj + ξj

|ξj | − 1

⎞
⎠
⎤
⎦. (22)
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However, the zero-frequency contribution (second term) vanishes since Kj is given by Kj = g1l
−1
ho

∑l−1
i=0 wij . The remaining

quadratic term is irrelevant since it does not involve any single-particle energies. The partition function involving δ�j reads
(discarding an irrelevant constant term) [7,37]

Zδ� = 1

N�

∫ [∏
k

Dδ�∗
kDδ�k

]
exp

⎡
⎣−

∑
iωn

∑
ij

δ�∗
i (−iωn)

(
(w−1)ij
g1l

−1
ho

+ δij

sgn ξj

iωn − 2ξj

)
δ�j (iωn)

⎤
⎦

=
∏
iωn

det−1

[
δij + g1l

−1
ho wij

sgn ξj

iωn − 2ξj

]
=
∏
j

sinh βξj

sinh βξ̃j

, (23)

where by {2ξ̃j } we denote the eigenvalues of
Aij = 2ξj δij − g1wij sgn ξj , i.e., det(2ξ̃kI − A) = 0, or,
respectively,

det

(
δij + g1l

−1
ho

2

wij sgn ξj

ξ̃k − ξj

)

= 1 + g1l
−1
ho

2

∑
i

wii sgn ξi

ξ̃k − ξi

= 0, (24)

where the second term holds for small corrections. Writing
ξ̃j = ξj + δξj and expanding in δξj , the fluctuation correction
to the free energy at zero temperature is

δ� = − 1

β
lnZδ� =

∑
j

δξj sgn ξj , (25)

where

δξi = −g1wii sgn ξi

2lho

⎛
⎝1 − g1

2lho

∑
j 
=i

wjj sgn ξj

ξj − ξi

⎞
⎠

−1

. (26)

Hence, δE2l = ∑
j δξj sgnξj and δE2l+1 = ∑

j 
=l δξ
′
j sgnξ ′

j ,
where ξ ′ and δξ ′ are computed as in Eq. (26) with the lth
level excluded.

The fluctuation correction to the separation energy and
the parity parameter can be read off directly from the
definitions (1) and (2). Note that the combined saddle-
point and fluctuation correction contains the leading-order
perturbative result (see Fig. 1, where the separation energy
is indicated by the red dashed line and the diamond symbol).
There is a small quantitative correction which improves the
agreement with the exact diagonalization results by D’Amico
et al. [21]. The fluctuation correction (26) is similar to the
one encountered in superconducting nanograins in the limit
where the superconducting gap � is much smaller than the
level spacing δε [7].

Interestingly, our analytical procedure also allows us
to identify the critical particle number that marks the
crossover between the few-body regime �̃ � ω and the
many-body regime �̃ � ω. The boundary of the mesoscopic
regime is marked by a breakdown of the expansion (26).
For large particle number, we can replace the harmonic
oscillator matrix element by its semiclassical expression
wjj ∼ 1/

√
j and convert the summation to an integral. This

gives

g1

2lho

∑
j 
=i

wjj sgn ξj

ξj − ξi

∼ g1

ωlho

√
4

N
ln 2N ∼ γ ln 2N, (27)

indicating that by successively increasing particle number,
the few-body expansion loses validity at a critical particle
number Nc ∼ e1/γ . In this case, the bulk parity parameter (5)
is comparable to the level spacing ω, which is a corresponding
criterion as in superconducting nanograins [9]. Note that
while the few-body to many-body crossover is manifested
in the parity parameter at leading order, the ground-state
energy is dominated by a Hartree mean-field term and will
be less sensitive to the crossover. From the perspective of
superconducting nanograin systems, such a predominance of
the Hartree contribution over the fluctuation correction is an
unexpected effect [7,9,10]. Therefore, our findings prompt a
revision of both the theoretical modeling of nanograins and
the related experimental results [3–6].

While the BCS pairing model can be solved exactly
[41–48], this is not the case for the model (4) or the reduced
pairing Hamiltonian (10). However, it would be interesting to
explore if the theory could be approximated by a generalized
Richardson-Gaudin model [49].

In summary, we have computed the ground-state energy, the
separation energy, and the parity parameter for a trapped one-
dimensional Fermi gas with weak attractive interaction. We
have used an insightful path-integral formalism which allows
us to make useful connections with other physical systems (i.e.,
mesoscopic superconductors). The parity parameter serves
as an order parameter that displays a fundamentally distinct
behavior in the mesoscopic and macroscopic regimes, and we
establish that the mesoscopic description persists for a wide
range of particle number. Our results provide a quantitative
description of the recent experiment [13]. A path integral
treatment indicates that the ground-state energy and the parity
effect are dominated by a Hartree mean-field contribution, with
BCS pairing fluctuations providing a subleading correction to
this result.
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