10 research outputs found

    New Sol-gel Formulations to Increase the Barrier Effect of a Protective Coating Against the Corrosion and Wear of Galvanized Steel

    No full text
    This study proposes a new pretreatment method that uses alkoxide precursors with a plasticizing agent; the purpose of this study is to improve the electrochemical and mechanical properties of a galvanized steel surface. Galvanized steel was covered with a hybrid film obtained from a sol that consisted of two alkoxide precursors, 3 - (trimethoxysilylpropyl) methacrylate (TMSM) and tetraethoxysilane (TEOS), with nitrate cerium in a concentration of 0.01 M and a polyethylene glycol (PEG) plasticizer. The hybrid coatings were obtained by dip-coating method with various concentrations of plasticizer (0, 20, 40 and 60 g.L-1). The hybrid films were analyzed by scanning electron microscopy (SEM), profilometry, contact angle measurements, a tribometer with the type-setting ball on the plate and electrochemical tests. The addition of the plasticizer into the hybrid films improves the corrosion resistance behavior compared to the sample without the plasticizer. The addition of 20 g.L-1 of plasticizer showed the best performance in the electrochemical tests. The mechanical behavior results indicated that higher PEG concentrations resulted in films with enhanced durability

    Effect of organic precursor in hybrid sol–gel coatings for corrosion protection and the application on hot dip galvanised steel

    No full text
    Sol-gel coating material with enhanced corrosion protection for zinc-coated steel has been obtained through the incorporation of mono-phenol and bi-phenol organic precursors in an epoxide functionalised-silica-zirconia matrix. The effect of the presence of the organic precursors in the baseline formulation has been studied; sol stability has been examined by viscosity evolution; gel densification stage has been studied by differential scanning calorimetry (DSC); material composition has been analysed by Fourier transform infrared spectroscopy (FTIR) and X-ray spectroscopy (XPS); coating thickness and roughness has been measured by profilometry. Corrosion performance in three artificial weathering tests showed outstanding performance in the delay of zinc and steel corrosion products emergence, and electrochemical impedance spectroscopy (EIS) measurement permitted the identification of the coating presenting the most promising properties in terms of corrosion protection. Developed coatings have shown outstanding contribution to service life extension of zinc-coated parts.The authors thank the support of the Basque Government for EMAITEK 2017 program and the ELKARTEK project NG-FAB16 (contract number KK2016-00025). The authors thank CIC BiomaGUNE and Luis Yate for XPS characterisation

    Hybrid sol–gel coatings for corrosion protection of galvanized steel in simulated concrete pore solution

    No full text
    The aim of this experimental research was to study the electrochemical behavior of organic– inorganic hybrid (OIH) coatings for corrosion protection of hot-dip galvanized steel (HDGS) in the first instants of immersion in simulated concrete pore solution (SCPS) (pH > 12.5). The electrochemical performance of the OIH coatings was assessed by electrochemical impedance spectroscopy, potentiodynamic polarization curves, macrocell current density, and polarization resistance. The OIH coatings were prepared via the sol–gel method and were deposited on HDGS surfaces by dip-coating using one or three dip steps. The electrochemical results obtained for HDGS samples coated with OIH matrices in SCPS showed higher corrosion resistance than bare HDGS; as the molecular weight (MW) of Jeffamine increased the barrier protection of the coating decreased. The lowest protection efficiency was found for HDGS samples synthesized with oligopolymers with an MW of 2000. Coatings produced with an oligopolymer of 230 MW conferred the highest protection. The surface morphology of the OIH coatings deposited on HDGS surfaces was studied by atomic force microscopy. The results show that the roughness of the OIH films depends on the MW of Jeffamine and on the number of dip-coating steps used. Thermogravimetry results show that the Jeffamine MW affected the thermal properties of the prepared OIH samples. The prepared OIH materials are thermally stable within the range of 20–80 C.The authors would like to gratefully acknowledge the financial support from Fundacao para a Ciencia e Tecnologia (FCT) for the PhD grant SFRH/BD/62601/2009 and EU COST action MP1202: HINT-"Rational design of hybrid organic-inorganic interfaces: the next step towards functional materials.''info:eu-repo/semantics/publishedVersio

    Organic-inorganic hybrid sol-gelcoatings for metal corrosion protection: a review of recent progress

    No full text
    This paper is a review of the most recent and relevant achievements (from 2001 to 2013) on the development of organic–inorganic hybrid (OIH) coatings produced by sol–gel-derivedmethods to improve resistance to oxidation/corrosion of different metallic substrates and their alloys. This review is focused on the research of OIH coatings based on siloxanes using the sol–gel process conducted at an academic level and aims to summarize the materials developed and identify perspectives for further research. The fundamentals of sol–gel are described, including OIH classification, the interaction with the substrate, their advantages, and limitations. The main precursors used in the synthesis ofOIHsol–gel coatings for corrosion protection are also discussed, according to the metallic substrate used. Finally, a multilayer system to improve the resistance to corrosion is proposed, based on OIH coatings produced by the sol–gel process, and the future research challenges are debated.Fundacão para a Ciência e Tecnologia (FCT) for the PhD grant SFRH/BD/62601/2009, Centro de Química [project F-COMP-01-01024-FEDER-022716 (ref. Pest-C/Qui/UI0686/2011)-FEDERCOMPETE] and EU COST action MP1202: HINT - Rational design of hybrid organic-inorganic interfaces: the next step towards functional material

    Measurement of charged jet suppression in Pb-Pb collisions at sNN\sqrt{s_{NN}}=2.76TeV

    No full text
    A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at sNN\sqrt{s_{NN}}=2.76TeV is reported. Jets are reconstructed from charged particles using the anti-kTk_T jet algorithm with jet resolution parameters R of 0.2 and 0.3 in pseudo-rapidity |η\eta|<0.5. The transverse momentum p_T of charged particles is measured down to 0.15 GeV/c which gives access to the low p_T fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R=0.3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high p_T leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R=0.2 and R=0.3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R<0.3.A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV is reported. Jets are reconstructed from charged particles using the anti-kTk_{\rm T} jet algorithm with jet resolution parameters RR of 0.20.2 and 0.30.3 in pseudo-rapidity η<0.5|\eta|<0.5. The transverse momentum pTp_{\rm T} of charged particles is measured down to 0.150.15 GeV/cc which gives access to the low pTp_{\rm T} fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R=0.3R=0.3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high pTp_{\rm T} leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R=0.2R=0.2 and R=0.3R=0.3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R<0.3R<0.3
    corecore