23 research outputs found

    Neutrophils, Fast and Strong

    No full text
    The history of medicine is also the history of our understanding of the role of neutrophils in protecting our bodies [...

    Polymorphonuclear Leukocyte Apoptosis Is Accelerated by Sulfatides or Sulfatides-Treated Salmonella Typhimurium Bacteria

    No full text
    Neutrophils die by apoptosis following activation and uptake of microbes or enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Here we report that sulfatides or sulfatides-treated Salmonella Typhimurium bacteria accelerated human neutrophil apoptosis. Neutrophil apoptosis was examined by flow cytometry. Sulfatides caused prominent increase in percentage of apoptotic cells after 2.5 hrs of incubation. Salmonella Typhimurium bacteria by themselves did not affect the basal level of apoptosis in neutrophil population. When neutrophils were added to S. Typhimurium “opsonized” by sulfatides, apoptotic index significantly increased, whereas the number of phagocyting cells was not influenced. Sulfatides’ proapoptotic effect was strongly dependent on the activity of β-galactosidase; inhibition of this enzyme impaired its potency to accelerate apoptosis. These data support the mechanism of neutrophil apoptosis triggering based on sulfatides’ ability to accumulate in intracellular compartments and mediate successive increase in ceramide content resulting from β-galactosidase activity

    Fine Regulation of Neutrophil Oxidative Status and Apoptosis by Ceruloplasmin and Its Derivatives

    No full text
    Timely neutrophil apoptosis is an essential part of the resolution phase of acute inflammation. Ceruloplasmin, an acute-phase protein, which is the predominant copper-carrying protein in the blood, has been suggested to have a marked effect on neutrophil life span. The present work is a comparative study on the effects of intact holo-ceruloplasmin, its copper-free (apo-) and partially proteolyzed forms, and synthetic free peptides RPYLKVFNPR (883–892) and RRPYLKVFNPRR (882–893) on polymorphonuclear leukocyte (PMNL, neutrophil) oxidant status and apoptosis. The most pronounced effect on both investigated parameters was found with copper-containing samples, namely, intact and proteolyzed proteins. Both effectively reduced spontaneous and tumor necrosis factor-α (TNF-α)-induced extracellular and intracellular accumulation of superoxide radicals, but induced a sharp increase in the oxidation of intracellular 2′,7′-dichlorofluorescein upon short exposure. Therefore, intact and proteolyzed ceruloplasmin have both anti- and pro-oxidant effects on PMNLs wherein the latter effect is diminished by TNF-α and lactoferrin. Additionally, all compounds investigated were determined to be inhibitors of delayed spontaneous apoptosis. Intact enzyme retained its pro-survival activity, whereas proteolytic degradation converts ceruloplasmin from a mild inhibitor to a potent activator of TNF-α-induced neutrophil apoptosis

    Role of Mitochondria in the Regulation of Effector Functions of Granulocytes

    No full text
    Granulocytes (neutrophils, eosinophils, and basophils) are the most abundant circulating cells in the innate immune system. Circulating granulocytes, primarily neutrophils, can cross the endothelial barrier and activate various effector mechanisms to combat invasive pathogens. Eosinophils and basophils also play an important role in allergic reactions and antiparasitic defense. Granulocytes also regulate the immune response, wound healing, and tissue repair by releasing of various cytokines and lipid mediators. The effector mechanisms of granulocytes include the production of reactive oxygen species (ROS), degranulation, phagocytosis, and the formation of DNA-containing extracellular traps. Although all granulocytes are primarily glycolytic and have only a small number of mitochondria, a growing body of evidence suggests that mitochondria are involved in all effector functions as well as in the production of cytokines and lipid mediators and in apoptosis. It has been shown that the production of mitochondrial ROS controls signaling pathways that mediate the activation of granulocytes by various stimuli. In this review, we will briefly discuss the data on the role of mitochondria in the regulation of effector and other functions of granulocytes

    Magic Peptide: Unique Properties of the LRR11 Peptide in the Activation of Leukotriene Synthesis in Human Neutrophils

    No full text
    Neutrophil-mediated innate host defense mechanisms include pathogen elimination through bacterial phagocytosis, which activates the 5-lipoxygenase (5-LOX) product synthesis. Here, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs), which mimic the receptor-recognized sites of bacterial (CpG-ODNs) and genomic (G-rich ODNs) DNAs released from the inflammatory area, on the neutrophil functions after cell stimulation with Salmonella typhimurium. A possible mechanism for ODN recognition by Toll-like receptor 9 (TLR9) and RAGE receptor has been proposed. We found for the first time that the combination of the magic peptide LRR11 from the leucine-rich repeat (LRR) of TLR9 with the CpG-ODNs modulates the uptake and signaling from ODNs, in particular, dramatically stimulates 5-LOX pathway. Using thickness shear mode acoustic method, we confirmed the specific binding of CpG-ODNs, but not G-rich ODN, to LRR11. The RAGE receptor has been shown to play an important role in promoting ODN uptake. Thus, FPS-ZM1, a high-affinity RAGE inhibitor, suppresses the synthesis of 5-LOX products and reduces the uptake of ODNs by neutrophils; the inhibitor effect being abolished by the addition of LRR11. The results obtained revealed that the studied peptide-ODN complexes possess high biological activity and can be promising for the development of effective vaccine adjuvants and antimicrobial therapeutics
    corecore