7 research outputs found

    Erhaltung und Wiederansiedlung des Kleinen Rohrkolbens ( Typha minima ) - Vegetationsaufnahmen, Monitoring und genetische Herkunftsanalysen

    Get PDF
    Abstract.: Galeuchet D. J. and Holderegger R. 2005. Conservation and re-introduction of Dwarf Bulrush (Typha minima) - vegetation surveys, monitoring and genetic analysis of origin. Bot. Helv. 115: 15-32. Typha minima was formerly widespread along fast flowing alpine rivers but is now red-listed as critically endangered. To assess its conservation perspectives, we surveyed the few remaining natural populations along the alpine part of the River Rhine from 1997 to 2002 and determined their genetic diversity using isozyme electrophoresis. Six of the populations became extinct or extremely small, probably due to shading by taller plants and trampling, while six other populations remained stable or increased, partly due to habitat restoration measures. The largest populations, with areas of more than 10'000 m2, are found in secondary habitats which are regularly disturbed due to water regime management. Of the 19 investigated isozyme loci, only six were polymorphic. Allelic diversity (1.4-1.8) was low in all populations, and the number of multilocus genotpyes (1-18) was low for 11 of 13 investigated populations. Genetic diversity was also studied for ex-situ cultivations of T. minima in Swiss botanical gardens and reintroduced stands.These artificial populations (each with 1-3 multilocus genotypes) were genetically similar to natural populations (average genetic distance 0.094). For two ex-situ cultivations with unknown origin, the likely origin could genetically be defined. Hybridisation between two ex-situ cultivations of different origin (i.e. a potential risk of genetic introgression) was detected in one botanical garden. It is concluded that the long-term conservation of T. minima requires both the restoration of regularly disturbed, sparsely vegetated river margins and the re-introduction of plants from ex-situ cultivations with appropriate origi

    Erhaltung und Wiederansiedlung des Kleinen Rohrkolbens (Typha minima) – Vegetationsaufnahmen, Monitoring und genetische Herkunftsanalysen

    Full text link
    Galeuchet D. J. and Holderegger R. 2005. Conservation and re-introduction of Dwarf Bulrush (Typha minima) - vegetation surveys, monitoring and genetic analysis of origin. Bot. Helv. 115: 15-32. Typha minima was formerly widespread along fast flowing alpine rivers but is now red-listed as critically endangered. To assess its conservation perspectives, we surveyed the few remaining natural populations along the alpine part of the River Rhine from 1997 to 2002 and determined their genetic diversity using isozyme electrophoresis. Six of the populations became extinct or extremely small, probably due to shading by taller plants and trampling, while six other populations remained stable or increased, partly due to habitat restoration measures. The largest populations, with areas of more than 10'000 m2, are found in secondary habitats which are regularly disturbed due to water regime management. Of the 19 investigated isozyme loci, only six were polymorphic. Allelic diversity (1.4-1.8) was low in all populations, and the number of multilocus genotpyes (1-18) was low for 11 of 13 investigated populations. Genetic diversity was also studied for ex-situ cultivations of T. minima in Swiss botanical gardens and reintroduced stands.These artificial populations (each with 1-3 multilocus genotypes) were genetically similar to natural populations (average genetic distance 0.094). For two ex-situ cultivations with unknown origin, the likely origin could genetically be defined. Hybridisation between two ex-situ cultivations of different origin (i.e. a potential risk of genetic introgression) was detected in one botanical garden. It is concluded that the long-term conservation of T. minima requires both the restoration of regularly disturbed, sparsely vegetated river margins and the re-introduction of plants from ex-situ cultivations with appropriate origi

    Habitat fragmentation and adaptation: a reciprocal replant-transplant experiment among 15 populations of Lychnis flos-cuculi

    No full text
    1. Habitat fragmentation and variation in habitat quality can both affect plant performance, but their effects have rarely been studied in combination. We thus examined plant performance in response to differences in habitat quality for a species subject to habitat fragmentation, the common but declining perennial herb Lychnis flos-cuculi. 2. We reciprocally transplanted plants between 15 fen grasslands in north-east Switzerland and recorded plant performance for 4 years. 3. Variation between the 15 target sites was the most important factor and affected all measures of plant performance in all years. This demonstrates the importance of plastic responses to habitat quality for plant performance. 4. Plants from smaller populations produced fewer rosettes than plants from larger populations in the first year of the replant-transplant experiment. 5. Plant performance decreased with increasing ecological difference between grassland of origin and target grassland, indicating adaptation to ecological conditions. In contrast, plant performance was not influenced by microsatellite distance and hardly by geographic distance between grassland of origin and target grassland. 6. Plants originating from larger populations were better able to cope with larger ecological differences between transplantation site and site of origin. 7. Synthesis: In addition to the direct effects of target grasslands, both habitat fragmentation, through reduced population size, and adaptation to habitats of different quality, contributed to the performance of L. flos-cuculi. This underlines that habitat fragmentation also affects species that are still common. Moreover, it suggests that restoration projects involving L. flos-cuculi should use plant material from large populations living in habitats similar to the restoration site. Finally, our results bring into question whether plants in small habitat remnants will be able to cope with future environmental change

    Appendix A. A table showing populations of origin of seeds of Lychnis flos-cuculi used in the greenhouse experiment.

    No full text
    A table showing populations of origin of seeds of Lychnis flos-cuculi used in the greenhouse experiment
    corecore