113 research outputs found
The Hospitals/Residents Problem with Couples: complexity and integer programming models
The Hospitals / Residents problem with Couples (hrc) is a generalisation of the classical Hospitals / Residents problem (hr) that is important in practical applications because it models the case where couples submit joint preference lists over pairs of (typically geographically close) hospitals. In this paper we give a new NP-completeness result for the problem of deciding whether a stable matching exists, in highly restricted instances of hrc, and also an inapproximability bound for finding a matching with the minimum number of blocking pairs in equally restricted instances of hrc. Further, we present a full description of the first Integer Programming model for finding a maximum cardinality stable matching in an instance of hrc and we describe empirical results when this model applied to randomly generated instances of hrc
Local search for stable marriage problems with ties and incomplete lists
The stable marriage problem has a wide variety of practical applications,
ranging from matching resident doctors to hospitals, to matching students to
schools, or more generally to any two-sided market. We consider a useful
variation of the stable marriage problem, where the men and women express their
preferences using a preference list with ties over a subset of the members of
the other sex. Matchings are permitted only with people who appear in these
preference lists. In this setting, we study the problem of finding a stable
matching that marries as many people as possible. Stability is an envy-free
notion: no man and woman who are not married to each other would both prefer
each other to their partners or to being single. This problem is NP-hard. We
tackle this problem using local search, exploiting properties of the problem to
reduce the size of the neighborhood and to make local moves efficiently.
Experimental results show that this approach is able to solve large problems,
quickly returning stable matchings of large and often optimal size.Comment: 12 pages, Proc. PRICAI 2010 (11th Pacific Rim International
Conference on Artificial Intelligence), Byoung-Tak Zhang and Mehmet A. Orgun
eds., Springer LNA
Socially stable matchings in the hospitals / residents problem
In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings.
In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem
"Almost stable" matchings in the Roommates problem
An instance of the classical Stable Roommates problem (SR) need not admit a stable matching. This motivates the problem of finding a matching that is “as stable as possible”, i.e. admits the fewest number of blocking pairs. In this paper we prove that, given an SR instance with n agents, in which all preference lists are complete, the problem of finding a matching with the fewest number of blocking pairs is NP-hard and not approximable within n^{\frac{1}{2}-\varepsilon}, for any \varepsilon>0, unless P=NP. If the preference lists contain ties, we improve this result to n^{1-\varepsilon}. Also, we show that, given an integer K and an SR instance I in which all preference lists are complete, the problem of deciding whether I admits a matching with exactly K blocking pairs is NP-complete. By contrast, if K is constant, we give a polynomial-time algorithm that finds a matching with at most (or exactly) K blocking pairs, or reports that no such matching exists. Finally, we give upper and lower bounds for the minimum number of blocking pairs over all matchings in terms of some properties of a stable partition, given an SR instance I
Social Welfare in One-sided Matching Markets without Money
We study social welfare in one-sided matching markets where the goal is to
efficiently allocate n items to n agents that each have a complete, private
preference list and a unit demand over the items. Our focus is on allocation
mechanisms that do not involve any monetary payments. We consider two natural
measures of social welfare: the ordinal welfare factor which measures the
number of agents that are at least as happy as in some unknown, arbitrary
benchmark allocation, and the linear welfare factor which assumes an agent's
utility linearly decreases down his preference lists, and measures the total
utility to that achieved by an optimal allocation. We analyze two matching
mechanisms which have been extensively studied by economists. The first
mechanism is the random serial dictatorship (RSD) where agents are ordered in
accordance with a randomly chosen permutation, and are successively allocated
their best choice among the unallocated items. The second mechanism is the
probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which
computes a fractional allocation that can be expressed as a convex combination
of integral allocations. The welfare factor of a mechanism is the infimum over
all instances. For RSD, we show that the ordinal welfare factor is
asymptotically 1/2, while the linear welfare factor lies in the interval [.526,
2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the
linear welfare factor is roughly 2/3. To our knowledge, these results are the
first non-trivial performance guarantees for these natural mechanisms
Popular matchings in the marriage and roommates problems
Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M′ with the property that more applicants prefer their allocation in M′ to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases
C-axis lattice dynamics in Bi-based cuprate superconductors
We present results of a systematic study of the c axis lattice dynamics in
single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer
Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both
experimental data obtained by spectral ellipsometry on single crystals and
theoretical calculations. The calculations are carried out within the framework
of a classical shell model, which includes long-range Coulomb interactions and
short-range interactions of the Buckingham form in a system of polarizable
ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and
Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes
of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve
good agreement between the calculated A2u eigenfrequencies and the experimental
values of the c axis TO phonon frequencies which allows us to make a reliable
phonon mode assignment for all three Bi-based cuprate superconductors. We also
present the results of our shell model calculations for the Gamma-point A1g
symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is
based on the published experimental Raman spectra. The
superconductivity-induced phonon anomalies recently observed in the c axis
infrared and resonant Raman scattering spectra in trilayer Bi2223 are
consistently explained with the suggested assignment.Comment: 29 pages, 13 figure
- …