940 research outputs found

    Cellular glutathione content in the organ of Corti and its role during ototoxicity.

    Get PDF
    Glutathione (GSH) is the major scavenger of reactive oxygen species (ROS) inside cells. We used live confocal imaging in order to clarify the role of GSH in the biology of the organ of Corti, the sensory epithelium of the cochlea, before, during and after the onset of hearing and in ~1 year old mice. GSH content was measured using monochlorobimane (MCB), a non-fluorescent cell permeant bimane that reacts with GSH, forming a fluorescent adduct through a reaction catalyzed by glutathione-S-transferase. GSH content increased significantly in inner hair cells during maturation in young adult animals, whereas there was no significant change in the outer hair cells. However, the GSH content in inner hair cells was significantly reduced in ~1 year old mice. The GSH content of supporting cells was comparatively stable over these ages. To test whether the GSH content played a significant protective role during ototoxicity, GSH synthesis was inhibited by buthionine sulfoximine (BSO) in organotypic cochlear explant cultures from immature mice. BSO treatment alone, which reduced GSH by 65 and 85% in inner hair cells and outer hair cells respectively, did not cause any significant cell death. Surprisingly, GSH depletion had no significant effect on hair cell survival even during exposure to the ototoxic aminoglycoside neomycin. These data suggest that the involvement of ROS during aminoglycoside-induced hair cell death is less clear than previously thought and requires further investigation

    A new neolepadid cirripede from a Pleistocene cold seep, Krishna-Godavari Basin, offshore India

    Get PDF
    Valves of a thoracican cirripede belonging to a new species of the Neolepadidae, Ashinkailepas indica Gale sp. nov. are described from a Late Pleistocene cold seep (52.6 ka), cored in the Krishna-Godavari Basin, offshore from the eastern coast of India. This constitutes the first fossil record of the genus, and its first occurrence in the Indian Ocean. Other fossil records of the Neolepadidae (here elevated to full family status) are discussed, and it is concluded that only Stipilepas molerensis from the Eocene of Denmark, is correctly referred to the family. Cladistic analysis of the Neolepadidae supports a basal position for Ashinkailepas, as deduced independently from molecular studies, and the Lower Cretaceous brachylepadid genus Pedupycnolepas is identified as sister taxon to Neolepadidae. Neolepadids are not Mesozoic relics as claimed, preserved in association with the highly specialised environments of cold seeps and hydrothermal vents, but are rather an early Cenozoic offshoot from the clade which also gave rise to the sessile cirripedes

    Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear

    Get PDF
    The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals

    High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain

    Get PDF
    Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain

    Intercellular Ca²⁺ signalling in the adult mouse cochlea

    Get PDF
    We have investigated wave‐like cytoplasmic calcium (Ca²⁺) signalling in an ex vivo preparation of the adult mouse organ of Corti. Two types of intercellular Ca²⁺ waves that differ in propagation distance and speed were observed. One type was observed to travel up to 100 μm with an average velocity of 7 μm/s. Such waves were initiated by local tissue damage in the outer hair cell region. The propagation distance was decreased when the purinergic receptor antagonists pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS; 50 μm) or suramin (150 μm) were added to the extracellular buffer. Immunocytochemical analysis and experiments with calcium indicator dyes showed that both P2X and P2Y receptors were present in supporting cells. A second class of waves identified to travel longitudinally along the organ of Corti propagated at a lower velocity of 1–3 μm/s. These ‘slow’ Ca²⁺ waves were particularly evident in the inner sulcus and Deiters’ cells. They travelled for distances of up to 500 μm. The slow Ca²⁺ signalling varied periodically (approximately one wave every 10 min) and was maintained for more than 3 h. The slow waves were not affected by apyrase, or by the P2 receptor agonists suramin (150 μm) or PPADS (50 μm) but were blocked by the connexin channel blockers octanol (1 mm) and carbenoxolone (100 μm). It is proposed that the observed Ca²⁺ waves might be a physiological response to a change in extracellular environment and may be involved in critical gene regulation activities in the supporting cells of the cochlea

    Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes

    Functional P2X7 receptors in the auditory nerve of hearing rodents localize exclusively to peripheral glia

    Get PDF
    P2X7 receptors (P2X7Rs) are associated with numerous pathophysiological mechanisms, and this promotes them as therapeutic targets for certain neurodegenerative conditions. However, the identity of P2X7R-expressing cells in the nervous system remains contentious. Here we examined P2X7R functionality in auditory nerve cells from rodents of either sex, and determined their functional and anatomical expression pattern. In whole-cell recordings from rat spiral ganglion cultures, the purinergic agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) activated desensitizing currents in spiral ganglion neurons (SGNs), but non-desensitizing currents in glia that were blocked by P2X7R-specific antagonists. In imaging experiments, BzATP gated sustained Ca2+ entry into glial cells. BzATP-gated uptake of the fluorescent dye YO-PRO-1 was reduced and slowed by P2X7R-specific antagonists. In rats, P2X7Rs were immuno-localized predominantly within satellite glial cells (SGCs) and Schwann cells (SCs). P2X7R expression was not detected in the portion of the auditory nerve within the central nervous system. Mouse models allowed further exploration of the distribution of cochlear P2X7Rs. In GENSAT reporter mice, EGFP expression driven via the P2rx7 promoter was evident in SGCs and SCs but was undetectable in SGNs. A second transgenic model showed a comparable cellular distribution of EGFP-tagged P2X7Rs. In wild-type mice the discrete glial expression was confirmed using a P2X7-specific nanobody construct. Our study shows that P2X7Rs are expressed by peripheral glial cells, rather than by afferent neurons. Description of functional signatures and cellular distributions of these enigmatic proteins in the peripheral nervous system will help our understanding of ATP-dependent effects contributing to hearing loss and other sensory neuropathies.Significance statementP2X7 receptors have been the subject of much scrutiny in recent years. They have been promoted as therapeutic targets in a number of diseases of the nervous system, yet the specific cellular location of these receptors remains the subject of intense debate. In the auditory nerve, connecting the inner ear to the brainstem, we show these multi-modal ATP-gated channels localize exclusively to peripheral glial cells rather than the sensory neurons, and are not evident in central glia. Physiological responses in the peripheral glia display classical hallmarks of P2X7 receptor activation, including the formation of ion-permeable and also macromolecule-permeable pores. These qualities suggest these proteins could contribute to glial-mediated inflammatory processes in the auditory periphery under pathological disease states

    Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis

    Get PDF
    To investigate dietary fibre intake and any potential dose-response association with coronary heart disease and cardiovascular disease

    Long-term excess mortality associated with diabetes following acute myocardial infarction: a population-based cohort study

    Get PDF
    The long-term excess risk of death associated with diabetes following acute myocardial infarction is unknown. We determined the excess risk of death associated with diabetes among patients with ST-elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) after adjustment for comorbidity, risk factors and cardiovascular treatments.Nationwide population-based cohort (STEMI n=281 259 and NSTEMI n=422 661) using data from the UK acute myocardial infarction registry, MINAP, between 1 January 2003 and 30 June 2013. Age, sex, calendar year and country-specific mortality rates for the populace of England and Wales (n=56.9 million) were matched to cases of STEMI and NSTEMI. Flexible parametric survival models were used to calculate excess mortality rate ratios (EMRR) after multivariable adjustment. This study is registered at ClinicalTrials.gov (NCT02591576).Over 1.94 million person-years follow-up including 120 568 (17.1%) patients with diabetes, there were 187 875 (26.7%) deaths. Overall, unadjusted (all cause) mortality was higher among patients with than without diabetes (35.8% vs 25.3%). After adjustment for age, sex and year of acute myocardial infarction, diabetes was associated with a 72% and 67% excess risk of death following STEMI (EMRR 1.72, 95% CI 1.66 to 1.79) and NSTEMI (1.67, 1.63 to 1.71). Diabetes remained significantly associated with substantial excess mortality despite cumulative adjustment for comorbidity (EMRR 1.52, 95% CI 1.46 to 1.58 vs 1.45, 1.42 to 1.49), risk factors (1.50, 1.44 to 1.57 vs 1.33, 1.30 to 1.36) and cardiovascular treatments (1.56, 1.49 to 1.63 vs 1.39, 1.36 to 1.43).At index acute myocardial infarction, diabetes was common and associated with significant long-term excess mortality, over and above the effects of comorbidities, risk factors and cardiovascular treatments
    corecore