18 research outputs found

    Antibodies in the serum of patient 0081 react with LMKB.

    No full text
    <p>The human serum contained antibodies directed against GST-LMKB amino acids 1457–1742, but did not react with GST alone. Black arrow indicates location of the GST-LMKB fusion protein.</p

    Loss of LMKB immunoreactivity after LMKB knockdown in BJAB and Hut78 cells.

    No full text
    <p>Treatment of BJAB cells with siRNA directed against LMKB resulted in loss of P-body staining as determined by indirect immunofluorescence (i). LMKB was detected in a cytoplasmic dot staining pattern in cells treated with control siRNA (green, iv). DAPI staining (blue) in ii and v indicate the location of nuclei. Merge of the preceding panels is shown in iii and vi. Treatment of Hut78 cells with siRNA directed against LMKB also resulted in loss of cytoplasmic dot staining (vii), compared with cells treated with control siRNA (green, x). Loss of LMKB did not alter the cellular location of Ge-1-containing P-bodies (red, viii and xi) demonstrating that LMKB is not required for P-body formation. Merge of vii and viii, and x and xi, is shown in ix and xii. DAPI staining (blue) in the merged panels indicates the location of nuclei. White bar in xii indicates 5.0 ”m.</p

    Indirect immunofluorescence shows that LMKB localizes to P-bodies.

    No full text
    <p>GFP-LMKB (green, i) localized to discrete, dot-like structures in the cytoplasm of transfected HEp-2 cells and co-localized with co-expressed FLAG-Ge-1 (red, ii). To determine the cellular location of <i>endogenous</i> LMKB, rabbit anti-LMKB antiserum was used to stain Hut78 cells. LMKB (green, iv) co-localized with Ge-1 (red, v), identified using human serum 0121. After exposure to arsenite for 1 hour, TIA (a marker of stress granules) was detected in cytoplasmic granules (red, viii). LMKB (green, vii) did not co-localize with TIA in stress granules, but was instead detected in adjacent P-bodies. Merge of fluorescence in i and ii, iv and v, vii and viii is shown in iii, vi and ix. DAPI staining in iii and vi (blue) indicates the location of nuclei. White arrows in vii and ix indicate representative LMKB-containing P-bodies adjacent to stress granules. White bar in ix indicates 5.0 ”m.</p

    A. Delineation of the smallest portion of Ge-1 that mediates interaction with LMKB.

    No full text
    <p>GFP-NLS-Ge-1 fragment (amino acids 630–1437) localized to nuclear dots (green, ii) in HEp-2 cells, but RFP-LMKB remained in P-bodies and was not detected in the nucleus (red, i), suggesting that N-terminal amino acids in Ge-1 are required for interaction with LMKB. To identify the N-terminal portion of Ge-1 that interacts with LMKB, RFP-LMKB was tested for the ability to recruit N-terminal fragments of Ge-1 to P-bodies. In the presence of RFP-LMKB (red, iv), GFP-Ge-1(1–1094) localized to cytoplasmic dots resembling P-bodies (green, v). In cells expressing RFP-LMKB (red, vii) and GFP-Ge-1(1–1094) (green, viii), both proteins co-localized with endogenous Ge-1 (blue, ix), confirming that these structures are P-bodies. In the absence of LMKB (RFP alone, red, x), GFP-Ge-1(1–1094) did not localize to P-bodies (green, xi), but was instead distributed throughout the cytoplasm. Smaller fragments of Ge-1, including amino acids 1–935 (green, xiv) and 104–1094 (green, xvii) did not co-localize with co-expressed LMKB in P-bodies. Merge of fluorescence in i and ii, iv and v, x and xi, xiii and xiv, and xvi and xvii is shown in iii, vi, xii, xv and xviii. DAPI staining (blue in the merged panels) indicates the location of nuclei. White bar in xviii indicates 5.0 ”m. <b>B.</b> Schematic representation of Ge-1 and summary of results. The N-terminus of Ge-1 contains a WD40 repeat domain. The C-terminus contains four regions that have repeating hydrophobic residue periodicity (ψ(X<sub>2-3</sub>)-repeat domains). + indicates a fragment of Ge-1 that interacts with LMKB; - indicates a fragment of Ge-1 that does not interact with LMKB. The black rectangle indicates the smallest tested portion of Ge-1 that interacts with LMKB.</p

    Ge-1 co-precipitates with C-terminal fragments of LMKB.

    No full text
    <p>COS-7 cells were transfected with plasmids encoding FLAG-Ge-1, GFP-LMKBc (containing amino acids 1457–1742), GFP-LMKBc’ (amino acids 1622–1742), FLAG and GFP as indicated. Extracts were prepared and incubated with mouse anti-GFP antibody and protein G coupled to Sepharose beads. Precipitates (top two panels) are compared with 5% of the total COS-7 cell extract input (bottom two panels). FLAG-Ge-1 co-precipitated with GFP-LMKBc(1457–1742) and with GFP-LMKBc’(1622–1742), but not with GFP alone.</p

    Bmpr2‑TD attenuates Alk2‑mediated BMP7 signaling in PaSMCs.

    No full text
    <p>Alk3‑deficient <i>Bmpr2</i><sup><i>Δtd/+</i></sup> PaSMCs were transfected with specific siRNA to silence <i>Bmpr2</i><sup><i>+</i></sup> (si<i>Bmpr2</i>‑ex12) or <i>Bmpr2</i><sup><i>Δtd</i></sup> (si<i>Egfp</i>) transcripts. After 48 h, the ability of BMP7 to induce <i>Id1</i> and <i>Smad6</i> gene expression was measured by qPCR, normalized to <i>Gapdh</i> and expressed as fold-change relative to <i>Bmpr2</i><sup><i>Δtd/+</i></sup>; <i>Alk3</i><sup><i>del/del</i></sup> PaSMCs treated with siNC. *P < 0.01 compared to control cells (siNC) treated with BMP7. Silencing efficiency was quantified by qPCR.</p
    corecore