66 research outputs found

    Experimental Analysis of Nonlinear Impairments in Fibre Optic Transmission Systems up to 7.3 THz

    Get PDF
    An effective way of increasing the overall optical fibre capacity is by expanding the bandwidth used to transmit signals. In this paper, the impact of expanding the transmission bandwidth on the optical communication system is experimentally studied using the achievable rates as a performance metric. The trade-offs between the use of larger bandwidths and higher nonlinear interference (NLI) noise is experimentally and theoretically analysed. The growth of NLI noise is investigated for spectral bandwidths from 40 GHz up to 7.3 THz using 64-QAM and Nyquist pulse-shaping. Experimental results are shown to be in line with the predictions from the Gaussian-Noise model showing a logarithmic growth in NLI noise as the signal bandwidth is extended. A reduction of the information rate of only 10 % was found between linear and non-linear transmission across several transmission bandwidths, increasing up to 7.3 THz. Finally, the power transfer between channels due to stimulated Raman scattering effect is analysed showing up to 2 dB power tilt at optimum power for the largest transmitted bandwidth of 7.3 THz

    Inter-channel Stimulated Raman Scattering and its Impact in Wideband Transmission Systems

    Get PDF
    The impact of inter-channel stimulated Raman scattering (ISRS) in wideband optical transmission systems is studied. ISRS cross-talk due to channel modulation was found to be negligible and a good agreement was found with theoretical results

    Digital Back-Propagation Performance in Wideband Optical Fibre Transmission Systems

    Get PDF
    Single channel digital back-propagation (SC-DBP) performance with different transmission bandwidths is experimentally and theoretically investigated. The SC-DBP gain reduces with transmission bandwidth; from 1.2 b/sym for single channel to 0.2 b/sym for C-band transmission at 2000 km

    Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid

    Get PDF
    The simple design of CuO micro-/nanostructures has recently attracted tremendous interest particularly for the enzyme-less sensing of biological molecules due to their intrinsic electronic and catalytic properties. Consequently attention has been directed to the development of new CuO nanomaterials that have multi-interdisciplinary applications. Herein, we report for the first time the fabrication of hierarchical porous CuO micro-/nanostructures with flower- and hollow sphere-like morphology via a facile hydrothermal method. Our experimental findings clarify that the source of the copper-ions effectively control the assembly of CuO nano-building blocks via the one-step hydrolysis of [Cu(NH3)4(H2O)2]SO4 and [Cu(NH3)4(H2O)2]Cl2 precursors, which produce hollow sphere and flower-like morphologies for sensitive and selective determination of ascorbic acid and glucose, respectively. Moreover, such unique properties of macro-/mesoporous CuO with defined dimensions and topologies offer minimized diffusive resistance for the dispersion of active sites. The best performance of the glucose and ascorbic sensor can be obtained at +0.55 V in 0.1 M sodium hydroxide solution. The as-prepared CuO modified (drop-casted) screen-printed electrodes (SPE) exhibit a fast electroactive response with high sensitivity within a wide concentration range of glucose and ascorbic acid in real samples. Significantly, the anion-dependent approach might be used to control effectively the expansion and features of other metal oxide micro-/nanostructures
    corecore