324 research outputs found

    Controlled release strategies for bone, cartilage, and osteochondral engineering: part I: recapitulation of native tissue healing and variables for the design of delivery systems

    Get PDF
    The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriersfor controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.The authors thank Fundacao para a Ciencia e Tecnologia for V.E.Santo's PhD grant (SFRH/BD/39486/2007). This work was carried out under the scope of the European FP7 Project Find and Bind (NMP4-SL-2009-229292) and Project MIT/ECE/0047/2009

    Performance Issues in U.S.–China Joint Ventures

    Get PDF
    Based on an in-depth study of U.S.-China joint ventures, this article offers some insights into the performance of such international business relationships. While the conventional literature treats government as an amorphous aspea of the political-legal environment, in this case government is an active participant and influence in the performance of international joint ventures (UVs). It has both a constraining and enabling effect on LJV structure, strategy, and performance. For example, limits can be placed on ownership shares of joint ventures and on prices of the output. At the same time, government can cooperate with LJVs and foreign parent companies by creating partners for foreign parent companies, acting as major customers, and improving financial performance by lowering taxes

    A Generic Agent Organisation Framework For Autonomic Systems

    No full text
    Autonomic computing is being advocated as a tool for managing large, complex computing systems. Specifically, self-organisation provides a suitable approach for developing such autonomic systems by incorporating self-management and adaptation properties into large-scale distributed systems. To aid in this development, this paper details a generic problem-solving agent organisation framework that can act as a modelling and simulation platform for autonomic systems. Our framework describes a set of service-providing agents accomplishing tasks through social interactions in dynamically changing organisations. We particularly focus on the organisational structure as it can be used as the basis for the design, development and evaluation of generic algorithms for self-organisation and other approaches towards autonomic systems

    The Political Economy of US Military Spending

    Full text link
    The causes of the dramatic rise in military spending in the post-war era have been the subject of much political and academic controversy. No extant formulation seems to provide a compelling explanation of the dynamics involved in the levels of, and rates of change in, such spending. In light of this, the authors develop a new model, based mainly on a political-business cycle argument, to account for these dynamics. The basic proposition in this model is that variations in national defense spending arise from political considerations which are related to real and desired conditions within the national economy. Applying this model to the experience of the United States 1948-1976, the authors show that it has a large measure of empirical validity. If one removes the effects of war-time mobilization, it is clear that for the United States the principal driving forces in military spending dynamics were (1) the perceived utility of such spending in stabilizing aggregate demand, (2) the political or electoral value of the perceived economic effects arising out of such spending, and (3) the pressures of institutional-constituency demands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68958/2/10.1177_002234337901600202.pd

    Phylogenetic conservatism in the relationship between functional and demographic characteristics in Amazon tree taxa

    Get PDF
    1. Leaf and wood functional traits of trees are related to growth, reproduction, and survival, but the degree of phylogenetic conservatism in these relationships is largely unknown. In this study, we describe the variability of strategies involving leaf, wood and demographic characteristics for tree genera distributed across the Amazon Region, and quantify phylogenetic signal for the characteristics and their relationships. 2. Leaf and wood traits are aligned with demographic variables along two main axes of variation. The first axis represents the coordination of leaf traits describing resource uptake and use, wood density, seed mass, and survival. The second axis represents the coordination between size and growth. Both axes show strong phylogenetic signal, suggesting a constrained evolution influenced by ancestral values, yet the second axis also has an additional, substantial portion of its variation that is driven by functional correlations unrelated to phylogeny, suggesting simultaneously higher evolutionary lability and coordination. 3. Synthesis. Our results suggest that life history strategies of tropical trees are generally phylogenetically conserved, but that tree lineages may have some capability of responding to environmental changes by modulating their growth and size. Overall, we provide the largest-scale synopsis of functional characteristics of Amazonian trees, showing substantial nuance in the evolutionary patterns of individual characteristics and their relationships

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Variation in wood density across South American tropical forests.

    Get PDF
    Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore